

Reflections of GIE & Marcogaz' Methane leakage study

ECDSO-g Coordination Platform

Jos Dehaeseleer

Secretary General

Xx-xx-xxxx

MARCOGAZ

"MARCOGAZ is <u>the</u> competent and credible technical voice for natural and renewable gases in the field of infrastructure, utilisation and sustainability.

The EU sees MARCOGAZ as a trusted partner for a safe and reliable role of gas in the future energy mix.

MARCOGAZ supports strong cooperation between all gas organizations in Europe aiming to speak as one industry."

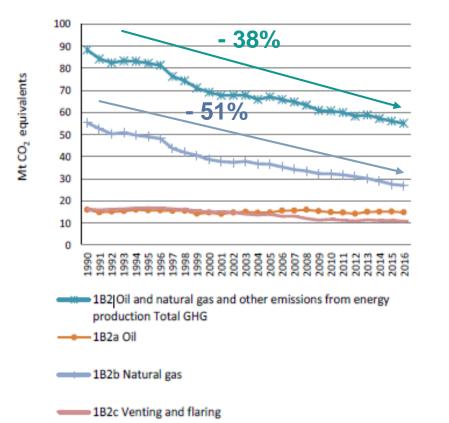
MARCOGAZ members – cooperation with key organisations

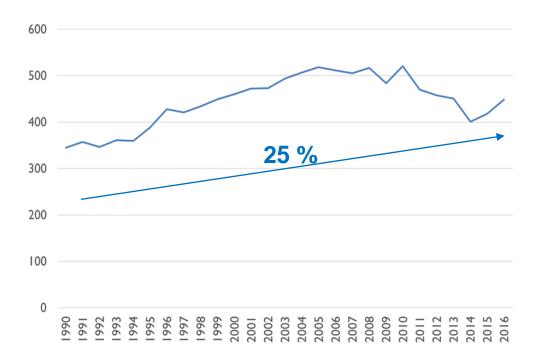
TECHNICAL ASSOCIATION OF THE EUROPEAN NATURAL GAS INDUSTRY

Why focus on methane emissions reduction?

✓ Main reasons to reduce methane emissions:

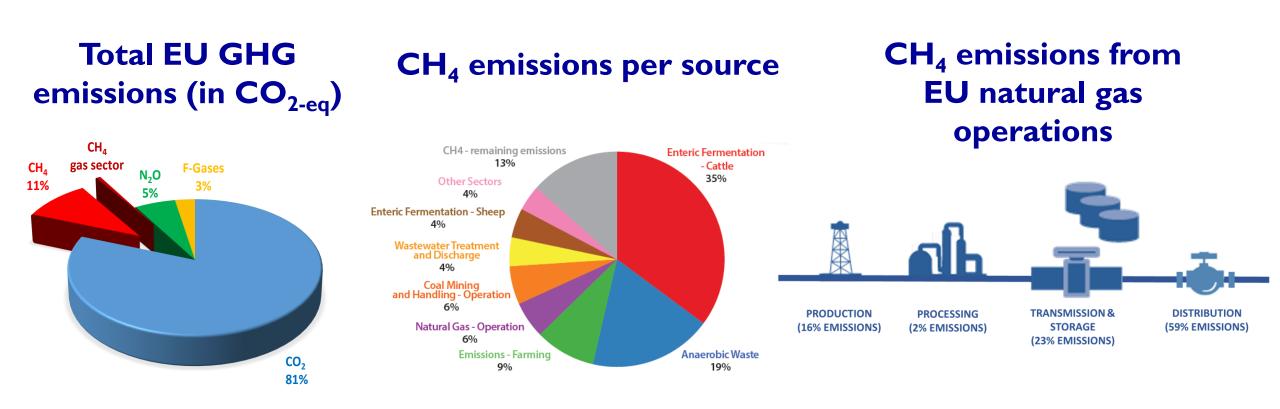
- Safety
- Climate change
 - Public opinion
 - Policy developments
- Commercial value




Emissions in the gas sector

marcogaz

Emissions data trend 1B2 (oil&gas) in the EU (Mt CO_{2e})


EU gas consumption (bcm)

Source: Data from EEA - Annual EU GHG inventory 1990–2016 and inventory report 2018

Current status of EU CH₄ emissions (data 2016)

marcogaz

Source: Elaborated by the authors based on European European Environment Agency GHG report

Policy developments

marcogaz

European "Green Deal"

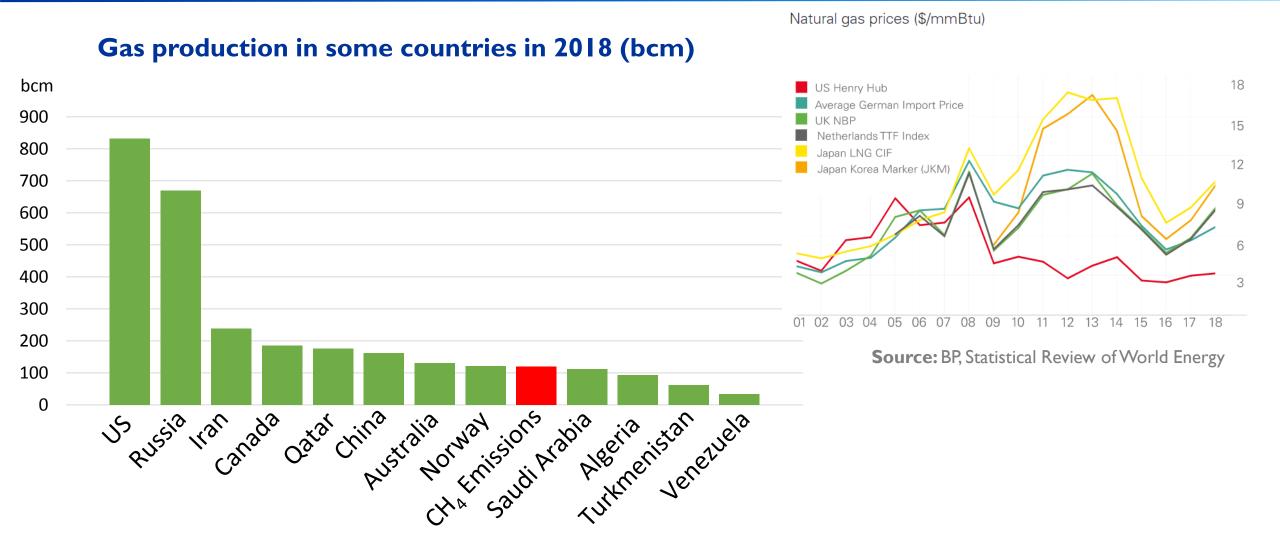
European Commission - Speech

[Check Against Delivery]

Opening Statement in the European Parliament Plenary Session by Ursula von der Leyen, Candidate for President of the European Commission

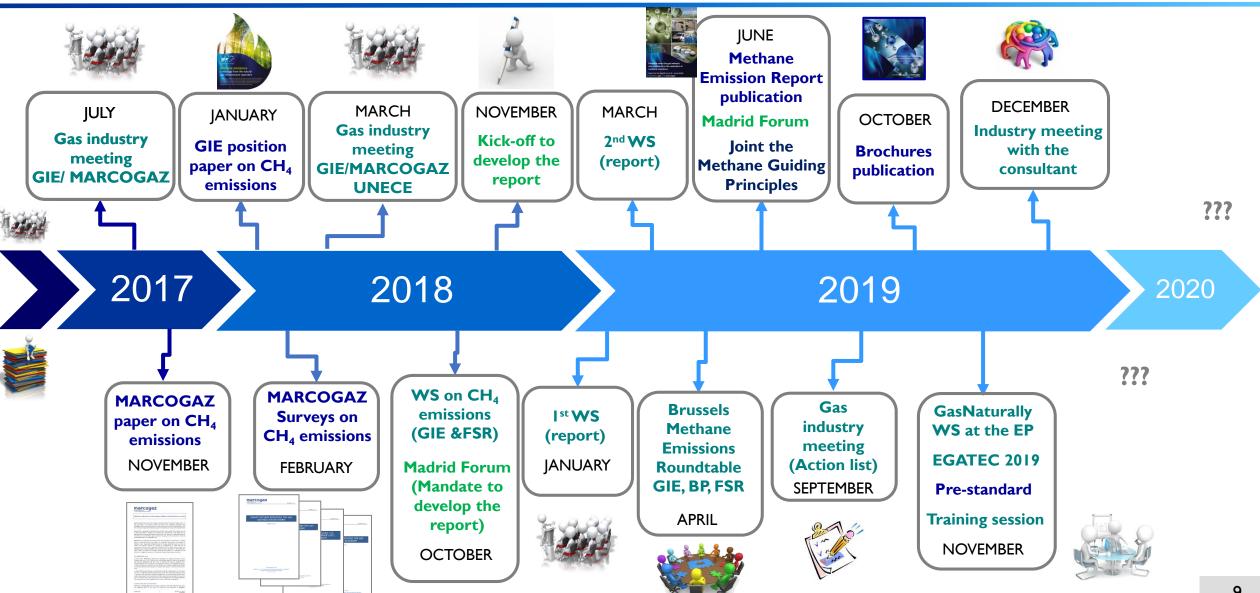
Strasbourg, 16 July 2019

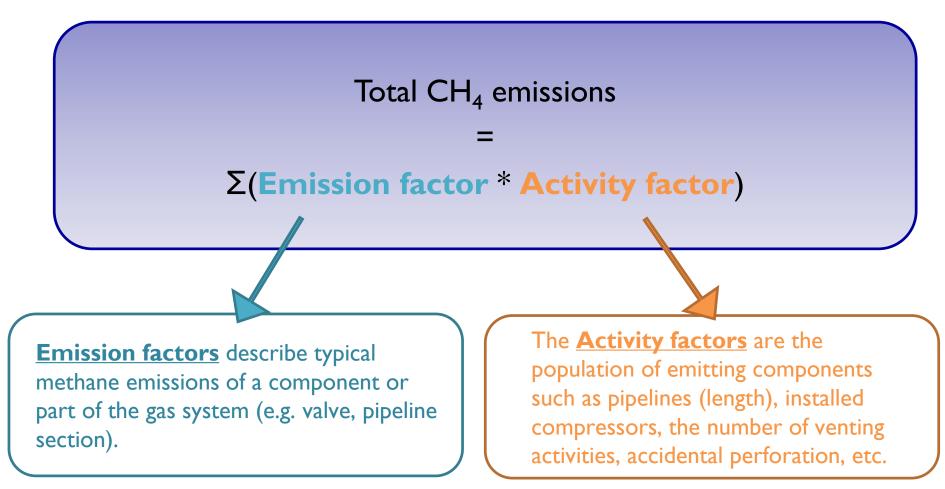
"I want a Europe to strive for more being the first climate-neutral continent"


ACER - The Bridge Beyond 2025 - Conclusions Paper (19/11/19)

TSOs, storage operators and LNG operators, as well as DSOs above a size threshold, should be **obliged to measure and report their methane emissions** according to a standard methodology, with sufficient granularity to allow the identification of the highest emitters. The data should be publicly available through a **European Methane Emissions Observatory**, as well as in the audited annual reports of the operators, which should also cover other sources of methane emissions. The measurements should be followed by an action plan at system operator level to address emissions. NRAs should recognise efficiently incurred costs for regulated entities. Once emission data are sufficiently robust, tradeable permits or taxes on actual emissions could be introduced.

Commercial value


marcogaz


Source: Based on the IEA and BP Statistical Review of World Energy

GIE & MARCOGAZ recent activities on CH₄ emissions

marcogaz

"Bottom > Up" methodology: based on an aggregation of collected data from the field (>< "Top > Down")

marcogaz

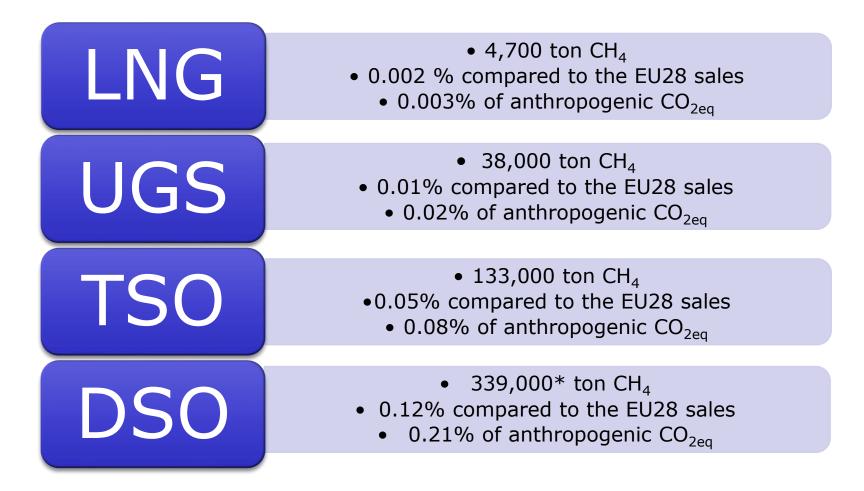
I) To **collect data** from different european companies

Included emissions

- ✓ Fugitive emissions
- Vented emissions (maintenance + incidents + operations)
- Unburned CH₄ in combustion processes

2) To check the **correlation** between CH_4 emissions and Activity Factor

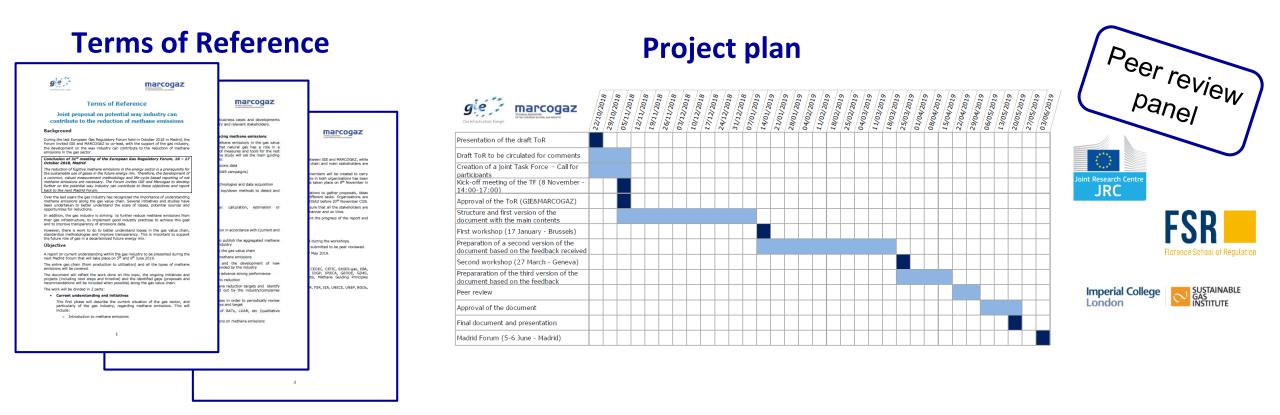
3) Conclusion on **representative dataset**


Marcogaz Reporting Methodology (III)

								_					_			
	Example		MET	HAN	EE	EMISSI	ON Calc	ul	ation fo	or Distri	bution					
							_									
	Organisation									Gas Comp						
	mpany:								Average Methane Content of Natural Gas:				% (Vol.)			
	issions for the Year:								Density o	f Methane:				0,71	175	kg/m ^s
Re	sponsible Person:				_				Conversio	n Factor fr	om mª Nat.	gas to g CH			0	g CH4 / m³ Gas
<u>C</u> -	Iculation				_								_	_		
Ca	iculation		Activity F	actore	1		Emissio	un l	Castora		Total F	missions	_	e	0.000	e for own factor
			ACTIVITY P	actors	-	Marcog	az Range*	sion Factors * Company		Nat.Gas	Methane			e for own factor		
<u> </u>					-	warcog	az Kange		Company		Nat.Gas	wethane	Ħ			
No.		Pressure	Data	Unit		Minimum	Maximum		Data	Unit	m³/a	g/a	Measurement	Literature	Estimation	Remark (please specify, if possible)
1.	Distribution Lines															
1.1	Grey cast iron with lead joint	Low		km	Μ			М		m3/km				\vdash	\square	
		Medium		km	Μ			L		m3/km				\vdash	\square	
<u> </u>	,	(1)		km	_			_		m3/km				—	\vdash	
1.2		Low		km	L			L		m3/km				<u> </u>	\square	
	Ductile cast iron	Medium		km	Μ			L_		m3/km				<u> </u>	\square	
		(1)		km	_			_		m3/km			_	<u> </u>	\vdash	
1.3		Low		km	L			L		m3/km				\vdash	\square	
	Steel	Medium		km	Ŀ			L_		m3/km				<u> </u>	\vdash	
		(1)		km				_		m3/km			_	<u> </u>	\vdash	
1.4	Steel with cathodic protection	Low		km	L			L		m3/km				\vdash	\square	
		Medium		km	L			L		m3/km				\vdash	\square	
_		(1)		km						m3/km				<u> </u>	\square	
1.5		Low		km	L			М		m3/km				\vdash	\square	
		Medium		km	М			М		m3/km					\square	
-	p	(1)		km						m3/km				\vdash	\square	
16	Plastic Polyethylene	Low		km	L			М		m3/km					\square	
		Medium		km	М			L		m3/km					\square	
		(1)		km						m3/km				\vdash	\square	
1.7		Low		km						m3/km					\square	
		Medium		km						m3/km					\square	
-		(1)		km						m3/km						

Gas Industry Reporting

Marcogaz Results

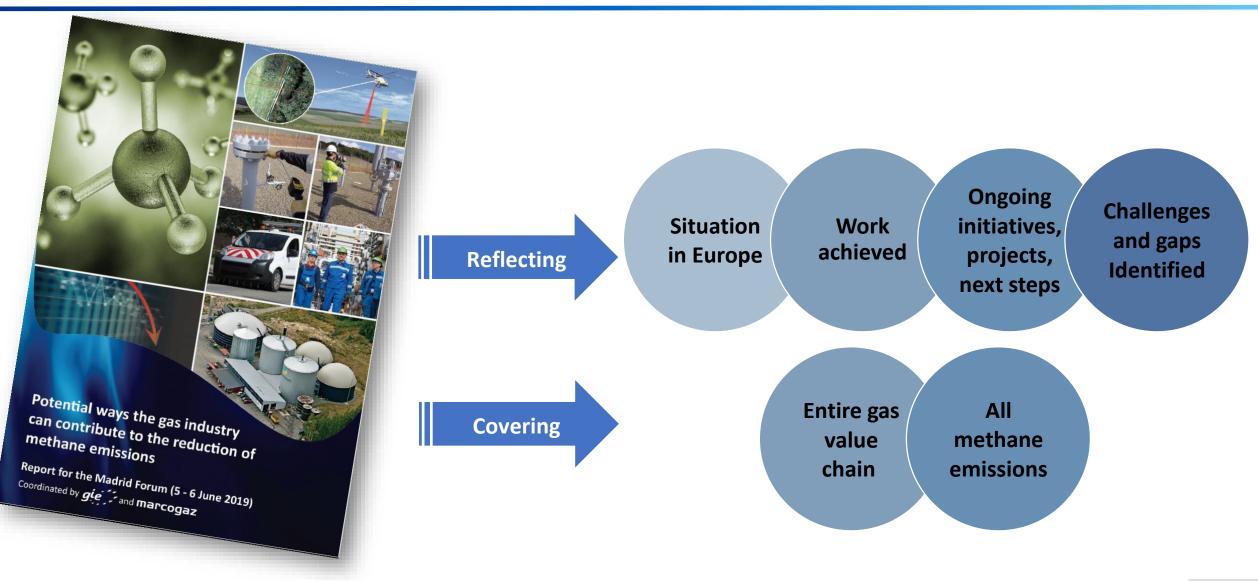


Remarks

- ✓ Results valid at global European level and not for an individual country.
- ✓ (*) 553,000 with 95% confidence level as mentioned in the report (<u>https://www.marcogaz.org</u>).

Report for the Madrid Forum

marcogaz

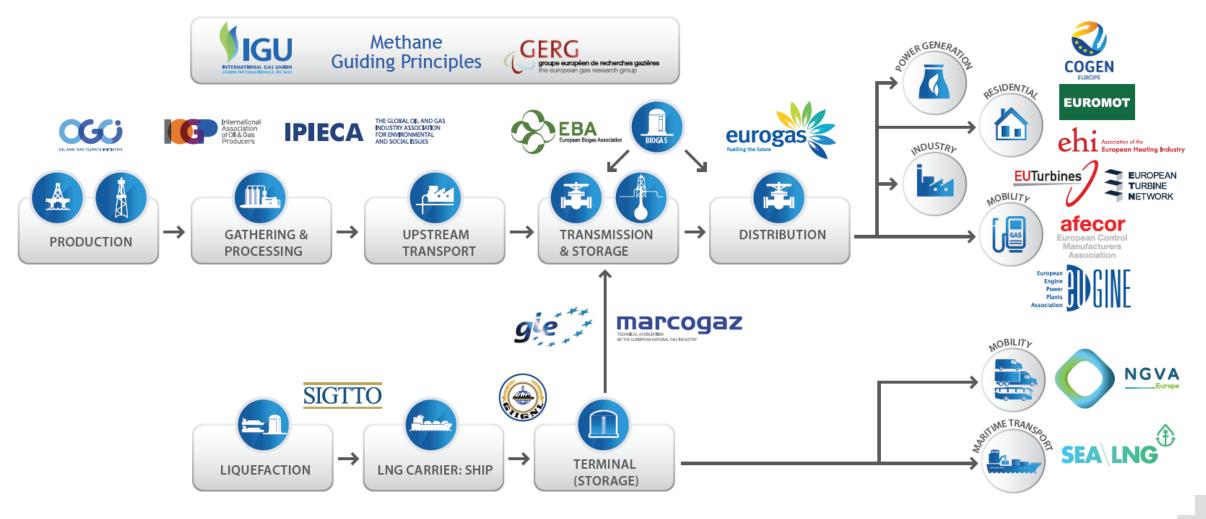


Ist WS (Brussels) - Almost 50 participants representing 37 organizations covering the entire gas chain, from production to utilization, the EC and NGOs

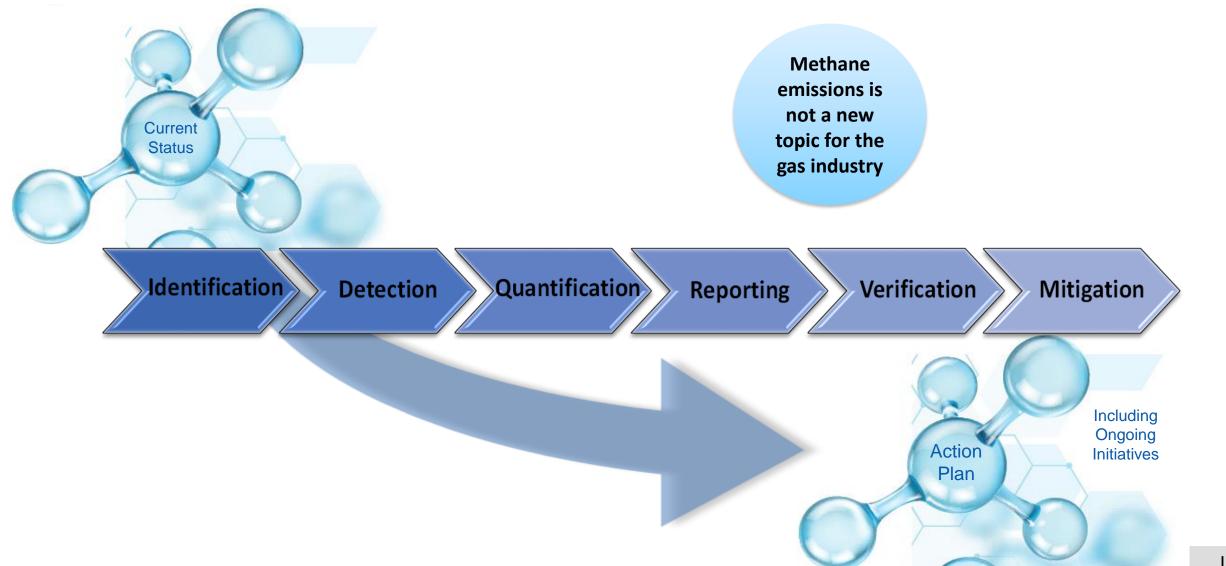
2nd WS (Geneva) – More than 90 participants representing gas industry, the EC, international institutions, NGOs and academics. Representatives from Third Countries

The role of the industry in reducing methane emissions

marcogaz



Link to the report: https://www.marcogaz.org


Contributions from representatives of the entire gas chain

marcogaz

From production to utilisation, including biomethane plants

Actions undertaken to reduce methane emissions

marcogaz

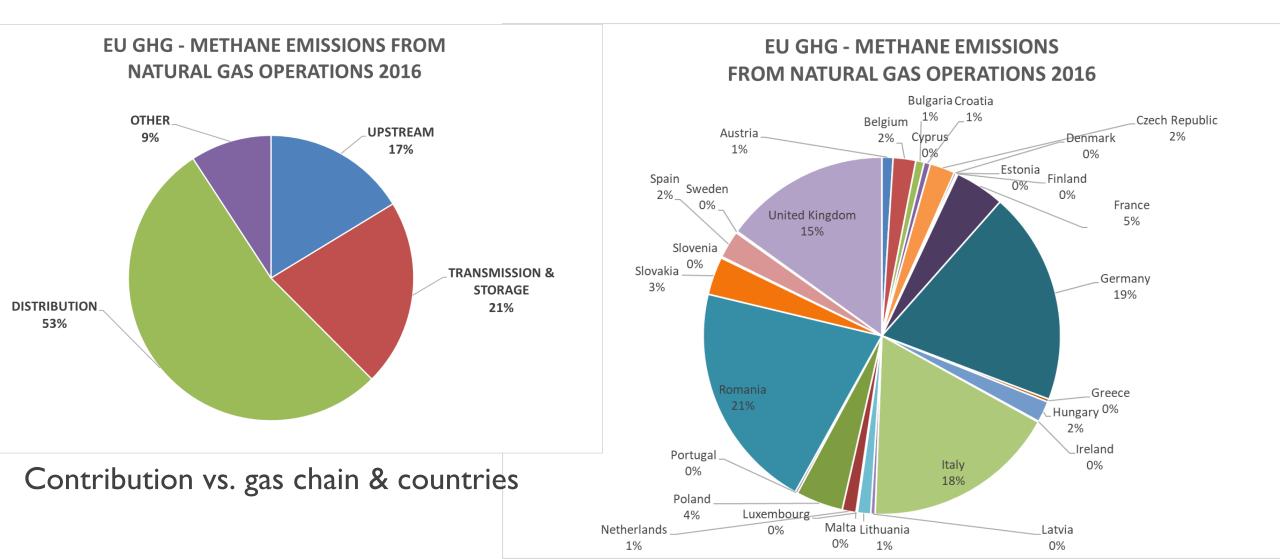
Methane emissions							
	Types of	Examples					
Freihlung	Leaks due to	connexions	Tightness failure				
Fugitives	Permeation						
		Purging/venting for works, commissioning and decommissioning	Works, maintenance				
	Operational emissions	Regular emissions of technical devices	Pneumatic emissions actuators, flow control valves,				
Vented		Starts & stops	Emissions from start and stops of compressors,				
	Incidents		Third party, corrosion, construction defect/material failure, ground movement, failure of installation				
Incomplete	combustion	Unburned methane in exhaust gases from combustion installations.					

Summary of existing activities

marcogaz

Production, transmission,	Type of emission							
LNG terminals, UGS and distribution	Fugitive	Venting	Incomplete combustion					
Identification / Detection	LDAR-type programs involving use of IR cameras, sniffers, etc.	Equipment/process mapping	Equipment/process mapping					
Quantification Measured, calculated and/or modelled		Measured, calculated and/or modelled	Calculated and/or modelled					
Mitigation	LDAR programs Implementation of BAT							
Reporting	 Sustainability and carbon footprint reports (based on company inventories) National Inventory Reports (to national authorities) Partnership and associations methodologies (e.g. CCAC OGMP, OGCI, IOGP, IPIECA, MARCOGAZ) Reporting initiatives (e.g. CDP, EDF) 							
Validation / Verification	According to GHG Protocol, EN 15446, ISO 14064, ISO 14001, ISO 50001, ISAE 3000. Verification of emissions often done by a third party							

The systematic approach to identify, detect, quantify, report and verify emissions is essential to close the current knowledge gap and enable gas industry to prioritise and allocate capital and human resources to efficiently target methane emissions at the lowest abatement cost.

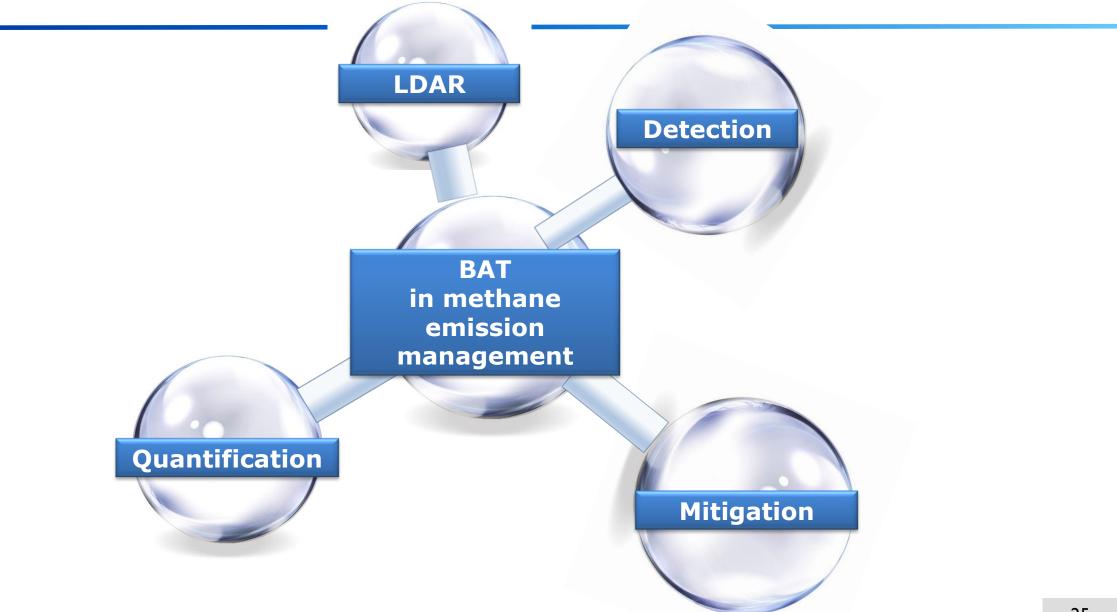

- ✓ The bottom-up approach is source specific, which allow the industry to efficiently spot and tackle its emissions, the difficulty being to properly quantify when estimations are necessary and to exhaustively account for all the potential sources.
- ✓ The top-down approach is global as it relies on atmospheric concentration measurement but the modeling process used to quantify the emissions based on the concentration is challenging, as well as the complementary analysis necessary to differentiate the sources.
- ✓ Reconciliation studies ongoing in Europe.

According to Article 12 of the United Nations Framework Convention on Climate Change (UNFCCC) members are required to create "a national inventory of anthropogenic emissions by sources and removals by sinks of all greenhouse gases"

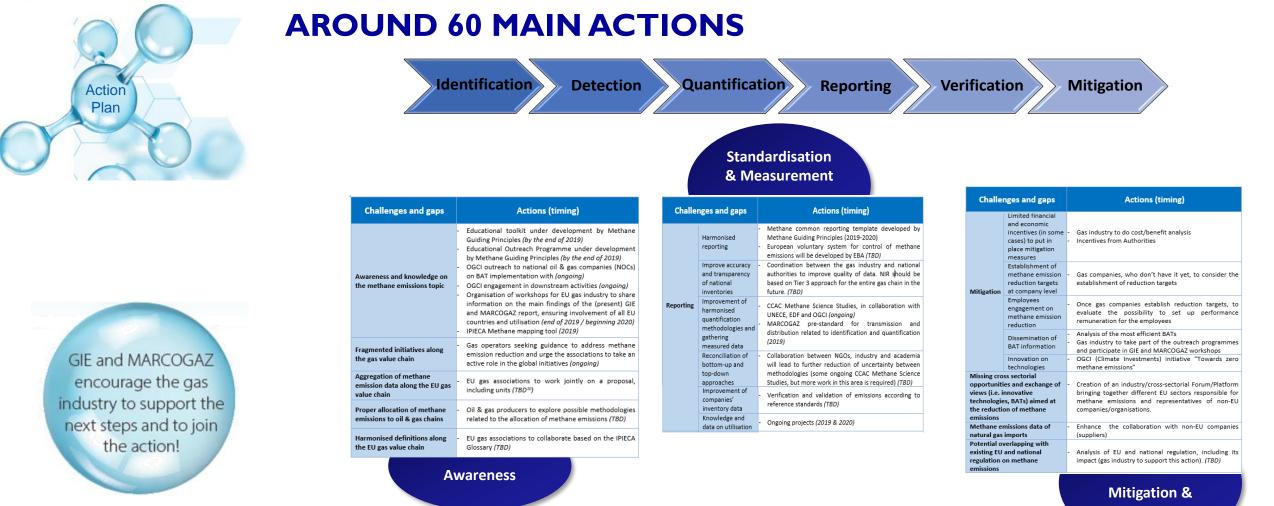
Although the framework for reporting is fixed by the UNFCCC, the method of emission estimation can differ from country to country, and even between several data providers within one country, as long as this method can be scientifically justified

- ✓ All EU Member States are required to monitor and report their methane emissions under the EU GHG monitoring mechanism, which sets the EU's own internal reporting rules on the basis of internationally agreed obligations (IPCC Guidelines).
- ✓ The IPCC Guidelines distinguish between three methodological tiers for quantification of emissions:
 - 1. Tier I: It is the simplest approach; it comprises the application of appropriate default emissions factor to a representative activity factor (usually throughput). Default emission factors for a set of activity data are listed in the IPCC Guidelines.
 - 2. Tier 2: Similar to Tier I approach. However, instead of default emissions factors, country-specific emission factors (developed from external studies, analysis measurement campaigns) are used.
 - 3. Tier 3: The most detailed approach based on a rigorous bottom-up assessment at the facility level, involving identification of equipment-specific emission sources, equipment inventory, measurement of emission rates per equipment type, etc.

National Inventories Fugitive Emissions from natural gas operations


marcogaz

Standard / Protocol	PROS	CONS				
<u>ISO 14064</u>	 Methodical approach to identifying sources and sinks; provides framework for emissions inventory system Requires collection of direct and indirect emissions (through boundary setting) Requires organisations to record activities to reduce emissions Outlines requirements to state uncertainty Total organisational emissions inventory 	 GHG emissions must be expressed as CO2e Organisations can establish own boundaries for emissions capture, however these must be stated (transparency issues) Organisations can identify the CO2e conversation factors, rather than using a single point source (consistency for comparison) 				
<u>GHG Protocol: Corporate Standard</u>	 Identifies a methodical approach to identifying, quantifying, assuring, reporting, verifying and target setting. Outlines requirements for external verification and reporting Identifies tools for calculating emissions Provides examples 	 Large standard, labour and cost intensive (however thorough) 				
<u>EPA 21</u>	 Identifies the specific equipment and methodologies for detecting and quantifying emissions Point source emission identification and quantification 	 Aimed at individual asset's emissions; no framework for organisations. No detail provided for verification Minimal detail for quality control 				
<u>EN 15446</u>	detecting and quantifying emissions	 Aimed at site or point source emission; doesn't provide framework for organisation emissions inventory Not necessarily verifiable but is supported by third party accreditation 				


Best Available Techniques

marcogaz

After the report - Action plan

marcogaz

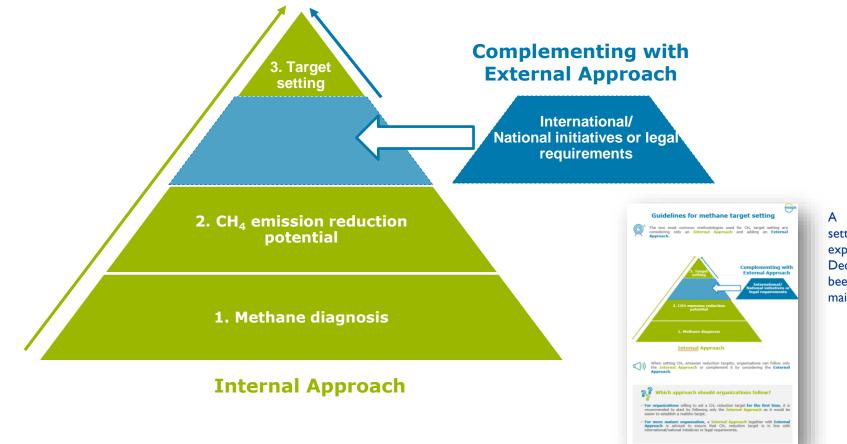
Reporting

After the report - Action plan

marcogaz

Dissemination activities and **training programmes** organise between GIE and MARCOGAZ based on the report

Brochure already published



Dissemination activities:

- ✓ Madrid Forum
- ✓ IGU Committees
- ✓ GasNaturally WS
- ✓ EGATEC 2019
- ✓ First training programme (Vienna)
- ✓ ...

Target setting

The two most common methodologies used for CH4 target setting are considering only an Internal Approach and adding an External Approach.

A Guide for Methane target setting is under elaboration, expected to be released in December 2019. A draft has been already prepared including main contents.

			Types of emissions							
		Fug	itives	Vented						
TECH				Operat	ional emissions					
OF THE EUROPEAN NATURAL GAS INDUSTRY		Permeation	Leaks due to connections	Purging/venting for works, commissioning and de- commissioning	Regular emissions of technical devices (e.g. pneumatic)	Start & Stop	Incidents	Incomplete combustion		
	Main lines & service lines	§ 6.4.1	§ 6.4.2	§ 6.5.2.1			§ 6.6			
	Connections (flanges, seals, joints)		§ 6.4.2							
ß	Measurement devices (chromatographs, analysers)		§ 6.4.2		§ 6.5.2.2					
of assets	Valves ² (regul. stations, blending stations, compressor stations, block valve stations)		§ 6.4.2	§ 6.5.2.1	§ 6.5.2.2					
_	Pressure / Flow regulators		§ 6.4.2		§ 6.5.2.2					
Groups	Safety valves		§ 6.4.2				§ 6.6			
Gr	Combustion <u>devices</u> (turbines, engines, boilers)		§ 6.4.2	§ 6.5.2.1		§ 6.5.2.3		§ 6.7		
	Compressors & compressor seals		§ 6.4.2	§ 6.5.2.1	§ 6.5.2.2	§ 6.5.2.3	§ 6.6			
	Flares					§ 6.5.2.3		§ 6.7		

··· · ·· ·

Collaborative initiatives

marcogaz

 Several collaboration initiatives (on voluntary basis) ✓ Gas industry contributes to increasing transparency via studies, research, analysis and initiatives, in order to overcome the uncertainty about CH_4 emissions.

