

Selection of Projects of Energy Community Interest (PECIs)

1st Meeting of Electricity and Gas Groups

Presentation REKK / DNV GL

Vienna 26.2.2016

- 1. Overview of general project assessment methodology
- 2. Electricity Market Model and Electricity Network Model
- 3. Gas Market Model
- 4. Multi-criteria assessment methodology

Project Objectives and Deliverables

Objectives

- To assess the candidate projects for electricity, gas and oil infrastructure, as well as for smart grids, in order to be able to identify those which bring the larges benefits for the EnC
- To develop the electricity and gas market models for the Energy Community Contracting Parties needs and use these in the assessment of PECI AND PMI candidates;
- To develop a multi criteria assessment methodology, using also the ENTSOE and ENTSOG methodology for cost benefit analysis where applicable;

Deliverables

- Interim report (by April 2016) containing:
 - the list of submitted projects, the result of the eligibility checks and data verification process, the description of the CBA methodology, indicators and weights used for the multi-criteria assessment
- Draft final report (by mid July 2016) containing:
 - description of the CBA methodology, indicators and weights used for the multi-criteria assessment, results of the CBA and multi-criteria assessment
- Final report (by 18.09.2016), which incorporates the contents of the draft final report and reflects to the comments and feedback received by EnC Secretariat and project promoters.

Project Workflow

Project Timetable

DNVGL

Overview of the Project Assessment Methodology

Overview of the Project Assessment Methodology

Overview of the Project Assessment Methodology

Step 1 – Questionnaires for Submissions of Candidate Projects

- Interconnector projects on the two side of the borders can only be modelled together
- Project promoters are hence requested to submit proposals jointly for the same project
- Oil and smart grid project evaluation follows a different approach: no modelling

Step 2 – Eligibility Check

Evaluation of projects with and without having a PCI status follows the same approach. The PCI status will be taken into account in the final step of the decision making: selected projects will qualify as a PECI or as a Project of Mutual interest. (Art 4 para 5 and 6.)

Step 3 – Verification of Project Data

• Minimal data need for project assessment: capacity (at the border), cost, commissioning date

Step 4 – Cost-Benefit Analysis - introduction

A cost-benefit analysis (CBA) is a technique to systematically compare the benefits and revenues with the costs over the life span of an investment project.

- Project evaluation from the view point of different stakeholders is called Cost Benefit Analysis
- The cost-benefit analysis should (ideally) assess all possible costs and benefits of a project
- Costs and benefits to be included in the CBA need to be quantified and monetised
- Additional qualitative criteria can be considered outside a CBA (second stage analysis)

DNV·GL

Steps of a cost-benefit analysis:

- Selection and definition of input data and model parameters
- Definition of costs and benefits
- Assumptions on future development of input data and definition of expected values
- Calculation of the total net economic benefit for different scenarios:
 - NPV: discounting future costs and benefits at a given discount rate (see also next slide)
- Sensitivity analysis of the results in order to determine critical input variables

An investment project would be beneficial to the investigated stakeholder group if the cost-benefit analysis provides a positive net benefit (i.e. a positive NPV)

- Costs and benefits of a project are assessed in the economic analysis by the Net Present Value (NPV)
- Calculation of the Net Present Value (NPV) of economic costs and benefits includes
 - the monetary costs and benefits of the investor
 - the costs and benefits to other stakeholders and the society as a whole affected by an investment project
- (Economic) NPV is the difference between the discounted total social benefits and costs
- Economic assessment of a project is positive if the NPV is positive (NPV > 0)

Step 4 – Cost-Benefit Analysis (Market and Network Modelling)

• Cost benefit analysis of the project: social NPV of the project calculated for the region

Step 4 – Cost-Benefit Analysis (Market and Network Modelling)

- PINT: put-in-one-at-a-time modelling
- TOOT: take-out-one-at-a-time modelling

Step 5 – Multi Criteria Assessment

- MCA allows integration of monetized benefits (result of CBA) with non-monetized benefits (assessment of additional quantitative and qualitative criteria)
- Outcome will be a relative ranking of all eligible projects (separate for electricity and gas projects)

Step 6 – Ranking

- 1. Overview of general project assessment methodology
- 2. Electricity Market Model and Electricity Network Model
- 3. Gas Market Model
- 4. Multi-criteria assessment methodology

General Approach to Cost-Benefit Analysis

- Takes the ENTSO-E CBA (February 2015) methodology as a basis, and monetizes the benefit categories where data availability allows it
- Monetised benefit values, together with the verified CAPEX and OPEX costs serve as input to the NPV calculation
- Reference scenario built up till 2030:
 - Network development according to ENTSO-E
 - Generation and demand in the Region as shown on slide 32-34
- All proposed and verified infrastructure elements are assessed individually – using the PINT (Put-IN one at the Time) approach
- All proposed and verified projects are also assessed using the TOOT (Take-Out One at the Time) approach

Parameters of the Cost-Benefit Analysis

- Components of Net Present Value (NPV) calculation
 - NPV = CS + PS+ Rent + Value of losses OPEX Investment cost + (CO2)
 - CS: Consumer surplus change in the countries of the area of analysis
 - PS: Producer surplus change in the countries of the area of analysis
 - Rent: Rent change in the countries of the area of analysis
 - Value of losses: Value of loss change in the countries of the area of analysis
 - OPEX: Operation and Maintenance cost change due to the project
 - Investment cost: verified investment cost
 - CO2: Calculated according to the selected option (in slide 25)
- When calculating the NPV 25 years of lifetime and a residual value of zero are applied → ENTSO-E methodology
- Values between 2016-2030 are modelled by EEMM; after 2030 values are kept constant → harmonized with ENTSO-E methodology
- Real social discount rate: 4 % → ENTSO-E methodology

Criteria Evaluated within CBA

Evaluation of the Variation of CO2 Emissions

- There are two options to evaluate CO₂ emissions
- CO2 emissions change based on the result of market model (EEMM)
 - Option A: Within the optimization of the market model -> this assumes a credible carbon taxation scheme, which is introduced in the modelling timeframe
 - ETS price in 2030: 22 €/tCO2
 - Linear growth path from 0 €/tCO2 (2020) to 22 €/tCO2 in 2030
 - Option B: Based on the emission changes of EEMM, ex-post calculation of CO2 emission impact

Transmission Network Model (EC-ET) – Regional Scope

- Update of the EC-ET model:
 - Albania
 - Bosnia and Herzegovina
 - Bulgaria
 - Croatia
 - Greece
 - Hungary
 - Kosovo*
 - Montenegro
 - Macedonia
 - Romania
 - Serbia
 - Slovenia
- Ukraine and Moldova will be added to the model
- The model is implemented in MATLAB

Transmission Network Model (EC-ET) – General Structure

- Planning horizon:
 - 2020
 - 2025
 - 2030
- Two methods are discussed at the moment:
 - Take Out One at the Time (TOOT)
 - Put In one at the Time (PINT)
- The EC-ET model represents the actual network flows
- Output: Additionally, the following assessments will be obtained:
 - Changes in non served energy
 - Changes in transmission losses

Transmission Network Model (EC-ET) – Input Data

- Input data needed for the model:
 - Generation capacity (electricity production)
 - Demand
 - Characteristics of the transmission network (voltage level: 110 and up)
- At the moment detailed network transmission data for 2007
 - The model will be updated with data from ENTSO-E
 - For Ukraine and Moldova the data will be provided by EC, from the Ukraine and Moldova TSO

European Electricity Market Model - Functionality

- The map shows the geographical coverage of the model in the South East European region:
 - 25 European Union countries handled by model (whole Energy Community region is covered)
- EEMM:
 - Competitive market equilibrium prices by countries
 - Electricity flows and congestions on crossborder capacities
- The exogenous power prices are reflecting the changes in fuel prices.
- Non ENTSO-E part of Ukraine and Moldova are also covered
- The model calculates the marginal cost of more than 3500 power plant blocks and sets up the merit order country by country.
- Taking into consideration the merit order and exports/import, the model calculates equilibrium prices.
- Regional power flow is ensured by 90 interconnectors between countries.

Supply Side: Calculation of Variable Costs and Merit Order

DNVGL

Cross Border Trade and Demand Side

Cross border trade

- Based on Net Transfer Capacity (NTC) values
- Non-satisfied demand for capacity results in price differences amongst regions

	Country A	Country B
Generation capacity	1000	500
MC	50	100
Consumption	400	400
Price	50	100
1.Case: 0 MW NTC	50	100
2.Case: 100 MW NTC	50	100
3.Case: 1000 MW NTC	50	50

Demand side

- Based on hourly modelling
- 90 representative hours, weighted to cover the year:
 - calculates baseload and peakload prices,
 - welfare effects

Welfare Components

Consumer surplus (CS):

Consumer surplus is the difference between the maximum price a consumer is willing to pay and the actual price they do pay.

Producer surplus (PS)

Market price multiply by the equilibrium quantity decreased by the total variable cost of production

Cross-border rent (RENT)

Price differentiate between two markets multiplied by the traded quantity

Total welfare

CS+PS+RENT

Main Market Model Assumptions – Supply Side I

	Coal and lignite	Natural gas	Nuclear	Wind	HFO/LFO	Hydro	Other RES
AL	0	0	0	0	0	1 801	1
BA	1 965	0	0	0	0	2 252	0
KO*	1171	0	0	1,35	0	48,71	0,1
ME	210	0	0	0	0	685	10
MD	0	2 858	0	0	0	80	2
МК	822	337	0	37	210	692	1
RS	3 501	0	0	9	0	2 270	3
UA_E	19 783	8 202	13 835	514	0	5 439	691
UA_W	5 000	0	0	0	0	27	0

Net installed capacity in the region in 2015 (in MW)

New fossil-based power generation capacities (in MW)

DNV.GL

	20	16-2020		2021-2025			2026-2030			
	Coal and lignite	Natural gas	HFO/LFO	Coal and lignite	Natural gas	HFO/LFO	Coal and lignite	Natural gas	HFO/LFO	
AL	0	200	0	0	160	0	0	0	0	
BA	1650	390	0	0	0	0	0	0	0	
KO*	0	0	0	500	0	0	0	0	0	
ME	225	0	0	0	0	0	0	0	0	
MD	0	0	0	0	0	0	0	0	0	
MK	120	440	0	200	0	0	1400	0	0	
RS	1305	630	0	320	0	0	0	0	0	
UA_E	0	12000	0	0	0	0	0	0	0	
UA_W	0	0	0	0	0	0	0	0	0	

Main Market Model Assumptions – Supply Side II

New RES-E power generation capacities (in MW)

		Hydro		PV		Wind			Other			
	2016- 2020	2021- 2025	2026- 2030									
AL	523	457	457	30	26	26	30	25	25	0	0	0
BA	0	0	0	0	0	0	0	0	0	0	0	0
KO*	212	0	0	6	5	5	148	100	100	10	0	0
ME	166	158	158	7	8	8	151	126	126	22	24	24
MD	0	0	0	0	0	0	149	124	124	8	8	8
MK	16	27	27	0	0	0	13	11	11	6	6	6
RS	391	644	644	8	9	9	500	400	400	141	123	123
UA_E	452	468	468	1 300	1 880	1 200	1 280	5 437	1 317	712	770	770
UA_W	0	0	0	0	0	0	0	0	0	0	0	0

Main Market Model Assumptions – Demand Side

Electricity demand (in GWh/year)

	2015	2020	2025	2030
AL	7 842	9 163	10 704	12 399
BA	11 780	12 709	13 726	14 825
KO*	2 663	6 316	9 216	10 484
ME	4 569	5 335	6 036	6 829
MD	5 861	6 567	7 357	8 243
MK	8 067	9 155	10 242	12 246
RS	36 004	37 237	41 107	47 662
UA_E	208 206	228 542	252 329	278 592
UA_W	4 559	4 767	4 974	5 182

 Present net transfer capacity (NTC) values are based on ENTSO-E; future crossborder capacity investments are based on Ten-Year Network Development Plan according to the Ministerial Council Decision 2015/09/MC-EnC

Main Market Model Assumptions – Fuel Prices

Oil price	 Based on US Energy Information Administration (EIA), Brent Europe forecasts
Natural gas price	 Result of the EGMM Reference case
Coal price	 Hard coal price equal ARA price Coal price forecasts are based on Economist Intelligence Unit Lignite price = hard coal * 0.55
Nuclear	 Taken from literature, but irrelevant (never marginal)
HFO, LFO	 Indexed to crude oil price

Assessed Geographical Area – Same for All Project Types

- Ministerial Council Decision 2015/09/MC-EnC Annex IV./(6)
 - "The area for the analysis of an individual project shall cover all Contracting Parties and Member States, on whose territory the project shall be built, all directly neighbouring Contracting Parties and Member States and all other Contracting Parties and Member States significantly impacted by the project."
 - Our proposal for the definition of area for the analysis:
 - All Contracting Parties
 - Neighbouring EU Member States (Bulgaria; Croatia; Greece; Hungary; Italy; Poland; Romania, Slovakia)

- 1. Overview of general project assessment methodology
- 2. Electricity Market Model and Electricity Network Model
- 3. Gas Market Model
- 4. Multi-criteria assessment methodology

General Approach for Cost-Benefit Analysis

- Taking the ENTSO-G CBA methodology as a basis, and monetize the benefit categories where data availability allows it
- Use of the European Gas Market Modell to monetize welfare change due to the analysed project (project added to reference) under normal and security of supply (SOS) circumstances
- SOS simulation: a monthly cut of Russian supplies through Ukraine for January
 - Weights: 95% for normal and 5% for SOS case
- Monetised benefit values, together with the verified CAPEX and OPEX costs serve as input to the NPV calculation
- Reference scenario built up till 2030:
 - Infrastructure development according to ENTSO-G TYNDP
 - Production and demand in the Region as shown on slide 52-53
- All proposed and verified infrastructure elements are assessed individually using the PINT (Put-IN one at the Time) approach
- All proposed and verified infrastructure elements are also assessed using the TOOT (Take-Out One at the Time) approach

Parameters of the Cost-Benefit Analysis

Illustration only example: New Interconnector BG-GR in 2020

- A new bi-directional interconnector is commissioned connecting BG and GR (capacity 134 GWh/day)
- Effect: spot LNG gas flows may reach Bulgaria and Macedonia

GR-BG Interconnector Welfare Change Effects

	Consumers	Producers	ers LTC trader SSO profit		тѕо	LNG	Total welfare	
GR	-0,4	0	0,1	0	7,6	9,4	16,7	
BG	347,1	-102,8	-219	1,2	12	0	38	

• BG:

- Consumer surplus surges due to lower prices (price drop from 30.5€/MWh to 22.5€/MWh)
- Producer surplus and LTC holder profit drops, since the domestic production can be marketed at a lower price
- TSO operating profits increase due to higher flows on the newly commissioned pipeline

• GR

 TSO profits and LNG terminal operator profits increase, due to higher utilisation of infrastructure

Impacts on SoS

The project alleviates the SOS situation in BG and MK

Sample Project Evaluation

	Welfare cha	ange in normal scer Weight: 95%	nario (mill €)	Welfare c	hange in SOS scena Weight:5%	total Investment cost (mill€)	change in CO2 emissions	NPV	
	20162020	20212025	20252030	20162020	20212025	20252030			
AL									
BA									
BG									
GR									
HR									
HU									
IT									
КО*									
ME									
MK									
MV									
PL									
RO									
SB									
SK									
UA									
REGION									

Natural Gas

European Gas Market Model – Major Characteristics

- Whole Europe (35 countries) is modelled
- Competitive prices by countries; price modelled for each 12 months
- Trade is based on long term contracts and spot trade within the EU and with exogenous countries and global LNG market (NO, RU, TR, LNG)
- Natural gas flows and congestions on interconnectors
- Physical constraints are interconnection capacities (transmission tariffs are also included)
- Trade constraints: TOP obligations with flexibility
- Domestic production and storage facilities are included
- Arrows: modelled gas flows
- LNG market representation is linked to Asian LNG prices

One Gas Year – 12 Months

DNVGL

Natural Gas

Model Scheme

1st Working Group Meeting

A Simple Model of Spot LNG Pricing for Europe (in \$/MMBtu)

Key Modelling Assumptions and Data Sources

	2016-2020	2021-2025	2026-2030	Source
Demand, production	TYNDP 2015	TYNDP 2015 (revised) forecast	TYNDP 2015 (revised) forecast	ENTSO-G TYNDP 2015
Infrastructure (LNG, pipeline, storage)	Existing infrastructure + new projects under construction (PL_LNG)	FID projects based on ENTSO-G TYNDP 2016-2020	No new infrastructure added	ENTSO-G GIE, GSE, GLE ENTSO-G TYNDP 2015
LTC-s	Current prices, Current routes Current ACQs Flexibility of LTCs is uniform (30%), except for energy island countries	LTC prices are adjusted to oil forecase price (according to assumed formula), after their expiry they are extended by half quantity	LTC prices are adjusted to oil forecase price (according to assumed formula)	Publicly available sources (press, Cedigas, Quarterly report) double checked with Commission LTC data
LNG	USA LNG enters: 7.7 bcm/year	USA LNG max 31.8 bcm/year Panama-canal extension		

Further Modelling Assumptions

- Infrastructure tariffs: TSO/SSO publications
 - We assume tariffs at their actual (2015 December) level
- New infrastructure is modelled with a uniform 2 €/MWh tariff
 - In the absence of flow we also examine lower values (1€/MWh on each interconnection point: 0.5/0.5 €/MWh on exit and on entry in both directions)
- Outside market prices are set exogenously
 - Japanese LNG Price is 28.4 €/MWh on average 2015 (seasonal fluctuation is assumed) LNG suppliers use Japanese price levels for their netback price. For 2020, 2025 and 2030 we use a fixed low Asian market price (21 €/MWh), to allow increased flow of LNG supply to Europe
 - Turkish and Algerian markets trade only through long term contracts the 50€/MWh price on the border is the spot trade price (we assume that there is no spot trade)
 - Russian spot gas is allowed in a low quantity (TTF price + 2 €/MWh)
 - Norwegian spot price is set based on TTF price (seasonal fluctuation is also assumed)

Assumptions on Production and Consumption

	2016	-2020	2021	-2025	2026	-2030		2016-2020 20		2016-2020 2021-2025 2026-20		2021-2025		-2030	
Country	Yearly (T	quantity Wh)	Yearly qua	ntity (TWh)	Yearly qua	ntity (TWh)	Country	Yearly quantity (TWh)		Country Yearly qu (TW		Yearly quantity (TWh)		Yearly quantity (TWh)	
	Demand	Production	Demand	Production	Demand	Production		Demand	Production	Demand	Production	Demand	Production		
AL	0	0	0	0	0	0	ко	0	0	0	0	0 (0		
AT	86	16	79	13	74	12	LT	26	0	26	0	25	0		
BA	2	0	2	0	2	0	LU	12	0	14	0	14	0		
BE	173	0	170	0	191	0	LV	20	0	22	0	24	0		
BG	36	8	46	14	48	16	ME	0	0	0	0	0	0		
СН	31	0	31	0	35	1	МК	2	0	7	0	7	0		
CZ	99	3	99	1	106	0	MV	10	0	11	0	12	0		
DE	702	100	671	80	625	67	NL	406	686	456	366	460	366		
DK	34	53	28	47	24	28	PL	171	25	184	25	190	25		
EE	8	0	9	0	9	0	PT	53	0	62	0	80	0		
ES	323	0	369	0	405	0	RO	102	112	109	95	130	75		
FI	28	0	32	2	26	4	SB	32	2	38	1	52	1		
FR	427	1	416	38	444	60	SE	17	0	16	1	16	1		
GR	34	0	38	0	52	0	SI	8	0	9	1	10	1		
HR	26	14	26	9	26	6	SK	53	0	59	0	61	0		
HU	98	16	119	11	111	5	UA	331	170	331	170	331	170		
IE	38	10	43	30	44	13	UK	797	380	746	384	820	355		
IT	751	88	769	79	783	68	TOTAL	4945	1684	5046	1367	5246	1274		

Source: TYNDP 2015, incl.: BA, SB, FYR of MK. Currently non existent gas markets are set to 0: AL, ME, KO* national forecast UA, MV)

DNV.GL

Consumption forecast for emerging gas markets

- Consumption change in some countries is subject to infrastructure not in place yet
- Will be used only when the projects on the territory of the respective country is modelled

TWH/year	2015	2020	2025	2030
Albania	0	4,9	8,82	11,76
Bosnia	3,92	8,82	11,76	15,68
Kosovo*	0	0	3,92	5,88
Montenegro	0	0	0,98	0,98
FYR of Macedonia	1,96	6,86	10,78	13,72

Source: ECA Gas to Power Study 2015

New Infrastructures Expected to be Built Between 2016 and 2020

New interconnector		Capacity (GWh/day)
Biriatou	FR-ES	60
	ES-FR	55
Alveringem-Maldegem	FR-BE	270
Griespass-Passo Gries	IT-CH	421
Ellund	DE-DK	40.56
Ruse-Giurgiu	BG-RO	14.38
	RO-BG	14.38
LNG	Country	Capacity (GWh/day)
Revythoussa extension	GR	+80.38
Dunkerque	FR	348
Klaipeda extension	LT	+27.1

Source: TYNDP 2015

We consider TAP to be a crucial infrastructure in the region

- Many gas projects in the region are dependent on Trans-Atlantic Pipeline. This is why we propose to analyse the projects with having TAP in the reference (2020)
- We will check the robustness of the results without TAP as well.

New interconnector		Capacity (GWh/day)
Trans Adriatic pipeline (TAP)	TR-GR GR-AL AL-IT	350
Interconnector Greece Bulgaria (IGB)	GR-BG BG-GR	90

New LTCs	to	ACQ (bcm/year)
SOCAR	Italy Greece Bulgaria	8 1 1

Assessed Geographical Area – Same for All Project Types

- Ministerial Council Decision 2015/09/MC-EnC Annex IV./(6)
 - "The area for the analysis of an individual project shall cover all Contracting Parties and Member States, on whose territory the project shall be built, all directly neighbouring Contracting Parties and Member States and all other Contracting Parties and Member States significantly impacted by the project."
 - Our proposal for the definition of area for the analysis:
 - All Contracting Parties
 - Neighbouring EU Member States (Bulgaria; Croatia; Greece; Hungary; Italy; Poland; Romania, Slovakia)

Components of Net Present Value Calculation

- NPV = 0.95*Total welfare change(normal)+ 0.05*Total welfare change (SOS) -Investment cost + (CO2)
- Modelled welfare components: Total welfare change= CS + PS+ TSO + LTC holder + SSO + LSO
 - CS: Consumer surplus change in the countries of the area of analysis compared to reference
 - PS: Producer surplus change in the countries of the area of analysis
 - TSO, SSO, LSO: Change in profit
 - Change in LTC contract holder's profit
 - Investment cost: verified investment cost
 - CO2: Calculated according to the selected option (in slide 49)
- When calculation the NPV 25 years of lifetime and a residual value of zero are applied → ACER recommendation
- Values between 2016-2030 are modelled by EGMM yearly; after 2030 values are kept constant → harmonized with ENTSOG methodology
- Real social discount rate: 4 % \rightarrow ENTSOG methodology

- 1. Overview of general project assessment methodology
- 2. Electricity Market Model and Electricity Network Model
- 3. Gas Market Model
- 4. Multi-criteria assessment methodology

	 When a decision-making problem has more than one goal to reach, there is always a trade-off between the different goals
Rationale for	 It may not be possible to sufficiently monetise all dimensions of impacts, which is necessary for inclusion within economic CBA
MCA	 MCA is a tool that allows to take into account several criteria and opinions by scoring, ranking and weighting a wide range of qualitative impact categories and criteria and to integrate them with the results of the CBA

DNVGL

DNVGL

DNV.GL

How to evaluate criteria?	 Evaluation of criteria will be based on indices that either quantify impacts based on changes in different structural variables score impacts based project specific characteristics provided by the answers to the questionnaire
Principles for selection and specification	 Avoid duplications resulting from a correlation or an overlapping of indicators of the multi-criteria analysis and criteria evaluated in CBA Avoid a discrimination of projects because of differences in quality and quantity of information submitted by project promoters Account for the fact that analysis is conducted in economic terms and irrespective of any financing arrangements
of indices	 Avoid a subjective and potentially discriminatory assessment based on a lack of detailed information that can only be provided by a detailed feasibility study or environmental impact assessment Ensure compatibility of criteria with proposed assessment framework

	 Analytic hierarchy process (AHP) is a structured technique for organizing and analysing complex decisions 									
	 Methodology is considered to be particularly efficient whenever investment projects have to be assessed based on different quantifiable and qualitative criteria taking into account various aspects of decision making 									
	 In the context discussed here AHP approach is used to determine weights of identified project assessment criteria by measuring their relative importance 									
How are weights determined?	 Basis of the AHP approach is a particular of a criterion over any other criterian over any other criteria to one another in diverse criteria to one another in 	airwis erion techr a rat	se comparison of relative importance expressed by a numerical nology), which allows comparing the cional and consistent way							
	 By using the eigenvectors, the weights (i.e. the percentages) 	Scal e	Relative Importance							
	of each criterion are then	1	Both criteria are equally important							
	calculated.	3	Criterion A is slightly more important than criterion B							
		5	Criterion A is more important than criterion B							
	 Draft weights based on separate 	7	Criterion A is much more important than criterion B							
	by DNV GL and REKK experts	9	Criterion A is absolutely more important than criterion B							

DNV.GL

Indicators Assessed Within Multi-Criteria Analysis – Electricity

Net Present Value (NPV) – Result of economic CBA

- Within the economic CBA the change in socio-economic welfare is assessed by the following criteria:
 - market integration via the impact on wholesale price changes (convergence) resulting from reduced congestion, access to sources with lower production costs and enhancement of competition
 - security of supply related benefits measured by reductions of outages and nonsupplied electricity
 - variation of CO₂ emissions related to changes in regional electricity production patterns
 - variation of **network losses** related to changing load flow patterns

Herfindahl-Hirschman-Index (HHI)

- Price reductions caused by an interconnection project may be driven not only by decrease of congestion and introducing sources with lower production costs, but can also occur due to the additional enhancement of competition
- The latter does not affect the production costs, but just transfers monopoly rents (the pricemark-ups over production costs), gained by producers / importers / traders (due to insufficient competition) to consumers
- As the market model used in the CBA assume a competitive market equilibrium, we suggest incorporating an explicit criterion on enhancement of competition
- The competition enhancement is approximated with the change of market concentration measured with the Herfindahl-Hirschman Index (HHI)
- **Calculation** on country level with and without the project:
 - Defined as the sum of the squares of the market shares in power generation (accounting for interconnection capacities)
 - The higher the value of the index the higher the market power

Indicators Assessed Within Multi-Criteria Analysis – Electricity

System Adequacy Index (SAI)

- Although CBA incorporates some aspects of security of supply, we suggest incorporating an
 explicit structural criterion to account for the system adequacy impact of each
 proposed electricity infrastructure project, reflecting on flexibility and ability of the system to
 withstand extreme conditions.
- Indicator reflects that overall a new transmission facility can:
 - provide more options for the maintenance of outages
 - increase reserve sharing and firm capacity purchases;
 - provide additional flexibilities for switching and protection arrangements;
 - provide load relief for parallel facilities, especially under outage conditions;
 - decrease the amount of power plants that have to be constructed in the importing region to meet reserve adequacy requirements.
- **Calculation** on country level with and without the project:
 - SAI = (generation capacity + interconnection capacity system peak demand) / system peak demand
 - The higher the value of the index the higher system security
- Addresses Flexibility, Safety and Security of Supply of Regulation 347/2013

Maturity of Project Indicator (MPI)

- Criterion aims to test the preliminary implementation potential and favours projects which have a clear implementation plan and/or have already commenced their preparatory activities
- Since the exact implementation potential related to every single project can only be established with detailed analysis of the project specifics and the legal and regulatory framework in the specific country, the suggested criterion can only provide an early indication based on the information provided in the questionnaires for each project
- Inter-alia the indicator measures:
 - progress in realisation (feasibility study, EIA, FID, permits and licences, etc.);
 - length of project realisation;
 - support from government and local authorities (i.e. exemption request decisions or cross-border cost allocation request / decision).
- Data to asses each project under this indicator will be gathered from online questionnaires

Example of Scoring and Ranking for Electricity Projects

Project Name	Indicators (Scores) [Scale 1 (min) to 5 (max)]				Weights				Indicators (Weigthted Scores)					
	Result of the CBA (NPV)	System Adequacy Index	Competition Enhance- ment Index (HHI)	Maturity of Project Indicator	Result of the CBA (NPV)	System Adequacy Index	Competition Enhance- ment Index (HHI)	Maturity of Project Indicator	Result of the CBA (NPV)	System Adequacy Index	Competition Enhance- ment Index (HHI)	Maturity of Project Indicator	Total Score Rai	Ranking
A	<mark>5,00</mark>	5,00	5,00	2,60	48%	20%	18%	14%	2,40	1,00	0,90	0,36	4,66	2
В	3,07	4,51	5,00	1,80	48%	20%	18%	14%	1,47	0,90	0,90	0,25	3,53	4
С	2,52	5,00	3,65	1,80	48%	20%	18%	14%	1,21	1,00	0,66	0,25	3,12	5
D	3,10	1,11	1,90	1,00	48%	20%	18%	14%	1,49	0,22	0,34	0,14	2,19	7
E	3,12	4,51	5,00	2,60	48%	20%	18%	14%	1,50	0,90	0,90	0,36	3,66	3
F	3,18	1,96	3,28	1,80	48%	20%	18%	14%	1,53	0,39	0,59	0,25	2,76	6
G	5,00	5,00	5,00	3,40	48%	20%	18%	14%	2,40	1,00	0,90	0,48	4,78	1

Rank	Project Name
1	G
2	A
3	E
4	В
5	С
6	F
7	D

- The final list will show a relative ranking of all eligible projects (i.e. a comparison of each individual project with the other submitted projects) from an economic point of view (i.e. social welfare for the Energy Community)
- It will not specify whether the difference is large or small and not tell whether the project is commercially attractive for an investor or not

Indicators Assessed Within Multi-Criteria Analysis – Natural Gas

Net Present Value (NPV) – Result of economic CBA

- Within the economic CBA the change in socio-economic welfare is assessed by the following criteria:
 - market integration via the impact on wholesale price changes (convergence) resulting from reduced congestion, access to sources with lower production costs and enhancement of competition
 - security of supply related benefits measured by the change in economic welfare in the case of a gas supply disturbance
 - variation of CO₂ emissions related to changes in gas demand patterns

Import Route Diversification Index (IDI)

- Price reductions caused by an interconnection project may be driven not only by decrease of congestion and introducing sources with lower production costs, but can also occur due to the additional enhancement of competition
- The latter does not affect the production costs, but just transfers monopoly rents (the pricemark-ups over production costs), gained by producers / importers / traders (due to insufficient competition) to consumers
- As the market model used in the CBA assume a competitive market equilibrium, we suggest incorporating an explicit criterion on enhancement of competition
- The competition enhancement is approximated with the Import Route Diversification Index (IDI), reflecting a simplified competition indicator based on system entry via interconnectors, offshore pipelines and LNG terminals
- **Calculation** on country level with and without the project:
 - Defined as the sum of the squares of the firm technical capacity at each interconnection point, each import point (offshore pipeline) and the firm technical send-out capacity at each LNG terminal
 - The higher the value of the index the higher the market power

Indicators Assessed Within Multi-Criteria Analysis – Natural Gas

System Reliability Index (SRI) – Daily N-1 Security

- Although CBA incorporates some aspects of security of supply measured on monthly basis, we suggest incorporating an explicit structural criterion on system reliability
- Indicator accounts for the impact of each proposed natural gas infrastructure project on daily operational flexibility and ability of the system to withstand extreme conditions.
- **Calculation** on country level with and without the project:
 - N-1 = (technical capacity + production capacity + max. storage deliverability + max.
 LNG send-out capacity) single largest supply capacity / total daily gas demand
 - The higher the value of the index the higher is the contribution of the project to the overall network flexibility

Maturity of Project Indicator (MPI)

- Criterion aims to test the preliminary implementation potential and favours projects which have a clear implementation plan and/or have already commenced their preparatory activities
- Since the exact implementation potential related to every single project can only be established with detailed analysis of the project specifics and the legal and regulatory framework in the specific country, the suggested criterion can only provide an early indication based on the information provided in the questionnaires for each project
- Inter-alia the indicator measures:
 - progress in realisation (feasibility study, EIA, FID, permits and licences, etc.);
 - length of project realisation;
 - support from government and local authorities (i.e. exemption request decisions or cross-border cost allocation request / decision).
- Data to asses each project under this indicator will be gathered from online questionnaires

Assessment of Oil Projects – eligibility check

Evaluation	 The proposed methodology is based on our previous PECI project assessment and on the ministerial decision 2015/09/MC-EnC adopting 347/2013 Regulation We suggest to follow this approach and evaluate smart grid projects talking into account eligibility and specific criteria
Eligible project categories	 ANNEX I. (3) 1. Pipelines used to transport crude oil 2. Pumping stations and storage facilities necessary for the operation of crude oil pipelines; 3. Any equipment or installation essential for the system in question to operate properly, securely and efficiently, including protection, monitoring and control systems and reverse flow devices
Geographical eligibility criteria	 Art. 4. 1(c) 1. Directly crossing the border: involves at least two CPs; or a CP and an MS or more 2. Located in one CP only, but has a significant cross-border impact

DNV.GL

Assessment of Oil Projects

Art. 4.2. (d) and ANNEX III (5) of Ministerial Decision 2015/09/MC-EnC adopting 347/2013 Regulation

Assessment of Smart Grid Projects

Evaluation	 The proposed methodology is based on our previous PECI project assessment and on the ministerial decision 2015/09/MC-EnC adopting 347/2013 Regulation
	 We suggest to follow this approach and evaluate smart grid projects talking into account eligibility and specific criteria

Assessment of Smart Grid Projects

Art. 4.2. (c) of Ministerial Decision 2015/09/MC-EnC adopting 347/2013 Regulation

Integration and involvement of network users with new technical requirements with regard to their electricity supply and demand

Efficiency and interoperability of electricity transmission and distribution in day-to-day network operation

Criteria

Network security, system control and quality of supply

Optimized planning of future cost-efficient network investments

Market functioning and customer services

Involvement of users in the management of their energy usage

Next steps

- INPUT DATA CHECK: Please check input data on slides: 32-34 and 52-53 and in case you have objections, send your data for electricity and gas demand forecast and for electricity generation input dataset latest by 4 March 2016 – otherwise data presented here will be used.
- PROJECT DATA CHECK for eligibility and verification: Additional data request will be asked by Consultant from the Project promoters during March.
- Promoters please send additional data to the Consultant as soon as possible, latest in a week after the request.
- Letter of support should be sent for interconnector projects in case the submission occurred from one country only. Investment cost of the other part of the project should be sent to the Consultant at the same time.

REKK www.rekk.hu

Borbála Takácsné Tóth

Senior research associate

REKK (REKK Kft.) Po. Box 1803 1465 Budapest Hungary

E-Mail: borbala.toth@rekk.hu **Phone:** +36-1-482-7070

DNV GL www.dnvgl.com

Dr. Daniel Grote

Senior Consultant Policy & Regulation

DNV GL Energy (KEMA Consulting GmbH) Kurt-Schumacher-Str. 8 53113 Bonn Germany

E-Mail: Daniel.Grote@dnvgl.com **Phone:** +49-228-4469049

DNVG

Background of gas in the EC

Source: EUROSTAT, Contracting Party national statistical institutes, compiled by the Energy Community Secretariat

- No gas market in 3 out of 8 Contracting Parties: Al, Kosovo*, Montenegro
- Energy island (gas): Serbia, Bosnia, Macedonia,
- Substantial gas consumption: in Moldova, Serbia and in the Ukraine (later declares reduction of gas consumption as a strategic goal)

Gas consumption for the West-Balkan : doubles in 15 years – under certain circumstances...

Source: ECA analysis

Economic Consulting Associates: Gas to Power Study, 2015 downloaded from EnC website

