Security Coordination Centre SCC Ltd. Belgrade

Regional security analyses

Dušan Prešić, Head of Development department December 11th, 2020

Table of content

- Introduction
- Services and main activities
- Security analysis in SCC
- Regional challenges for CSA implementation
- CSA methodology
- CSA process
- Coordination function from TRINITY
- Conclusion

Introduction – Foundation of SCC

- **❖** SEE region was not covered by existing RSC(I)s (TSCNET and CORESO).
- ❖ Following the form defined by ENTSO-E's Policy Paper "Core strategy for TSO Coordination" and European NC/GL, SEE TSOs recognized the need for regional cooperation.
- **❖** April 2015: EMS, CGES and NOSBiH established SCC as the first RSC(I) in SEE, based in Belgrade.
- **1**st of August 2015: SCC started operational activities.

Introduction – RSC Status

- There are 5 operational Regional Security Coordinators (RSCs) accross Europe:
 - Coreso (2008)
 - TSCNET (2008)
 - SCC (2015)
 - Nordic RSC (2016)
 - Baltic RSC (2016)
- From May 2020, SEleNe CC was established in Thessaloniki as the 6th RSC.

Introduction – SCC service users

Services and main activities – 5 RSC functions

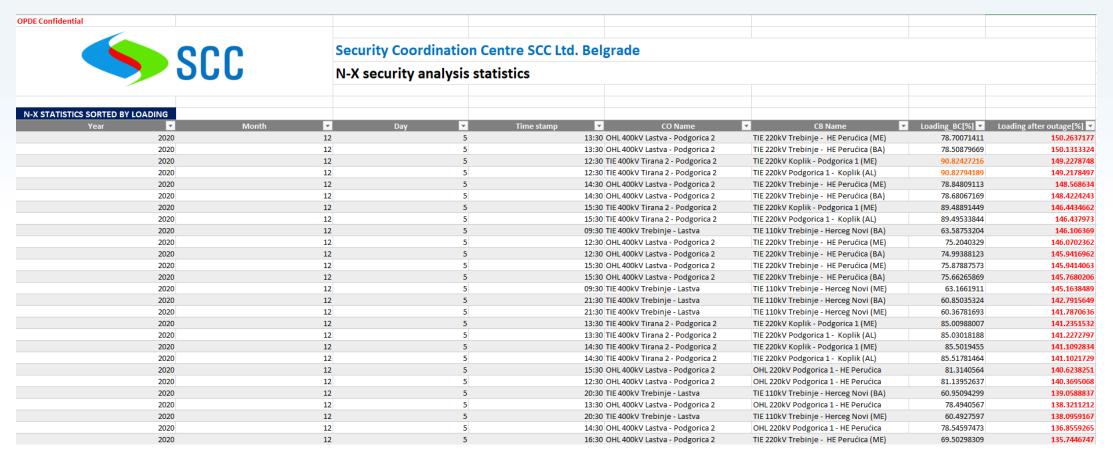
SCC

- **Services and main activities:**
 - 1. Validation and correction of IGMs, including merging of IGMs into CE SA CGM (IDCF and DACF timeframe)
 - 2. Security analysis without Remedial Actions (RAs)
 - 3. Coordinated capacity calculation (CCC) for day ahead timeframe (dry run process)
 - 4. Short Term Adequacy (STA),
 - 5. Outage Planning Coordination (OPC),
 - 6. Consistency Check of Power System Defense Plans (NC ER),
 - 7. Coordination in Critical Grid Situations (CGS)

Security analysis in SCC – CSA process

SCC

- **Service: Security analyses without RAs**
- Timeframes: IDCF (3 times per day) and DACF
- Input: CGMs merged by SCC, Contingency and Monitoring lists provided by TSOs
- Process:
 - Simulate disconnection of Contingency in the base case CGM
 - Perform load flow calculation on altered CGM
 - Check for overload in all Monitoring elements

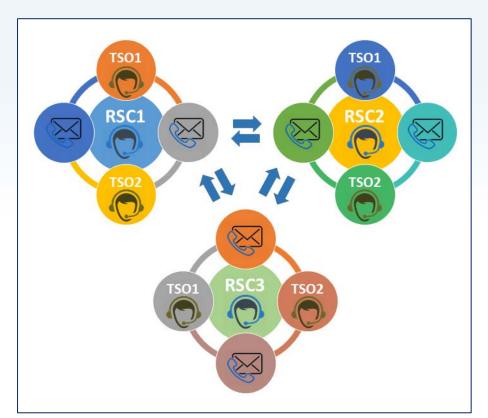

Fur	nction results																									
Area	Туре	00-24	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
UX	AC LF		ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК										
UX	N-1 VIOLATION																									
UX	N-1 DIV																									
UX	N-X VIOLATION		38	36	18	17	15	29	40	36	46	42	120	60	45	46	38	27	40	50	52	34	56	24	25	21
UX	N-X DIV		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
UX	FB																									
UX	NTC																									

Security analysis in SCC – CSA results

Output: unique report for each TSO service user is provided on local FTP server

Security analysis in SCC - RA function

SCC


❖ From 14th of December 2020 SCC is starting to use new operational tool that has posibility to include RA function in security analysis.

Regional challenges for CSA implementation

SCC

- However, regardles of the posibility, security analyses in SCC will remain the same, since on the SEE level there are two main issues:
 - Missing Capacity Calculation Region (CCR) for non-EU TSOs in SEE
 - Missing regional methodology for Coordinated Security Analysis (CSA)
- Close cooperation among all RSCs and TSOs in the region is required in order to overcome these obstacles.

CSA methodology - Basic info

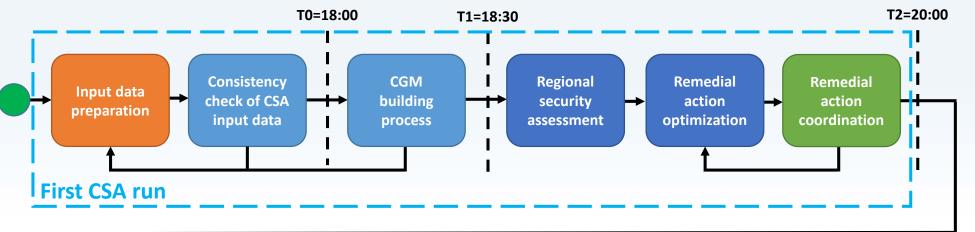
- **❖** Each CCR is developing regional CSA methodology based on document: *All TSOs' proposal for a methodology for coordinating operational security analysis in accordance with Article 75 of Commission Regulation (EU) 2017/1485 of 2 August 2017 establishing a guideline on electricity transmission system operation (a.k.a. CSAm)*
- **\Delta** However, that is not the case for WB6 TSOs since there is no formal CCR.
- **Starting point for regional CSA methodology in WB6 is also CSAm since it:**
 - covers the coordination of operational security analysis at Pan-European level
 - is developed in accordance with Article 75 of SO GL
 - is also aligned with CGM methodology and CACM
 - applies to all TSOs, RSCs, (C)DSOs and SGUs

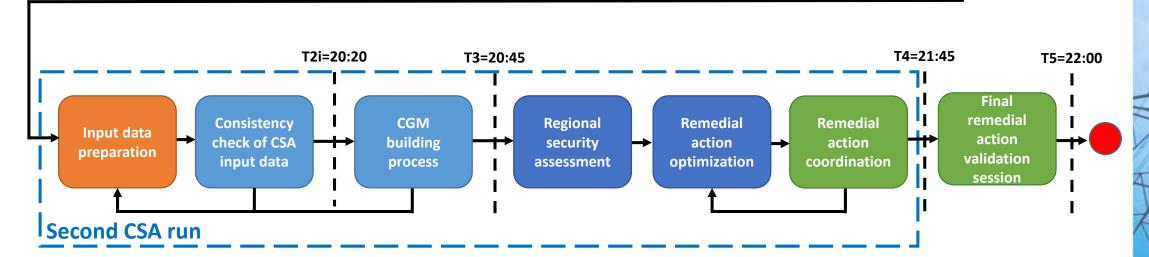
CSA methodology – Most impothant topics

SCC

CSAm covers the following topics:

- Determination of influencing elements (influence factor determination, identification of observability area elements and external contingencies)
- Principles of coordination (establishment and sharing of contingency lists, coordinated operational security assessment, coordination of remedial actions, cross-border impact assessment, exchange of results)
- Management of uncertainties (forecast of intermittent generation and load)
- Risk assessment
- Inter-RSC coordination
- Governance and implementation
- CSAm covers operational security analysis for 3 timeframes: intraday, day-ahead and long term studies (year-ahead up to week-ahead).




CSA process - DA timeframe

Coordination function from TRINITY

SCC

TRINITY

- Cooperation between RTE-group and SCC
- TRINITY is Horizon 2020 project: http://trinityh2020.eu/
- Goal is to enhance cooperation and coordination among SEE TSOs

Conclusion

- There is need for close cooperation between SEE TSOs and RSCs.
- RSCs and TSOs are partners and collaborators on the same task of ensuring the highest security of electricity supply standards in Europe.
- **❖** RSCs are key actors for enabling TSO coordination in Europe and should encourage mutual cooperation.
- **There are 2 main obstacles in order to fully implement CSA in SEE region:**
 - Establishment of non-EU CCR in SEE region (in line with EnCS paper "Concept for implementation of the CACM and FCA Regulations in the Energy Community" from July 2020);
 - Creation of regional methodology for CSA process.

Thank you for your attention!

Security Coordination Centre SCC Ltd. Belgrade

11000 Belgrade, Vojvode Stepe 412

Phone: +381 11 3972 943

+381 11 3972 944

+381 64 6496 694

E-mail: info@scc-rsci.com

Web: www.scc-rsci.com

