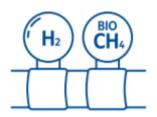


Transport & Energy Community Workshop: Interlinks between Energy and Transport Juan Lopez – Gas Department 21 October 2020

- Why this Report?
- Findings
- Main takeaways


The Report is available at: <u>link</u>
Published on 10 July, with info collected as of 20 May 2020

Investigate gas network adaptations for ET

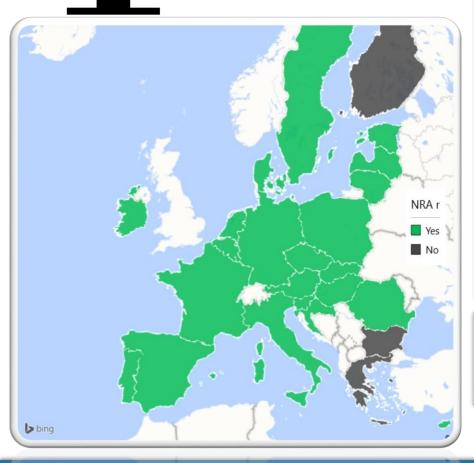
"Is gas transmission infrastructure in EU ready to allow new de-c/low-c gases (H2 and biomethane)?"

By 2050 "green gases" (H2 and bioCH4) ~ 30% to 70% of total gas use

H2 TSO acceptance, blending limits/ targets, EU vs. national approach, type of injection, connection points, treatment in network plans



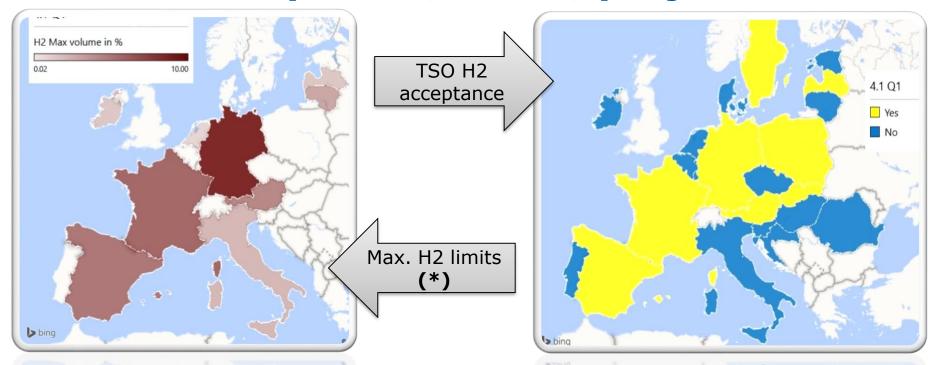
Networks regulation, national H2 strategies, operators, electrolysers ownership


BioCH4 injections, capacities, connection points, roles of producers/DSO/TSO

Information collected from NRAs

23 NRAs (85%)

NRA Survey on Hydrogen, Biomethane, and Related Network Adaptations

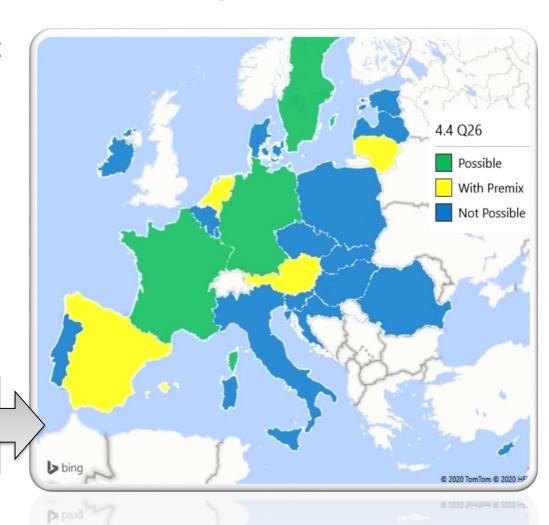

Executi	ve Summary	2
1. IN	FRODUCTION	8
1.1	Scope	8
1.2	Objective	8
1.3	Timeline	8
1.4	NRA responses	8
1.5	Technical note	8
2. MA	NIN FINDINGS	9
2.1	H2 blending	9
2.2	100% H2 dedicated networks	
2.2 2.3	100% H2 dedicated networks H2 concentration in gases from non-conventional sources	12
		12
2.3	H2 concentration in gases from non-conventional sources	12 13
2.3 2.4 2.5	H2 concentration in gases from non-conventional sources	12 13 13

DISCLAIM LIV.

This Evaluation of Responses Report ("Report") has been prepared by using information provided by NRAs. It aims to provide a snapshot of the status quo as of May 2020. The information contained in the Report may have changed or be outdated. ACER and NRAs provide this information on a "best effort" basis, but cannot guarantee the accuracy, the consistency or the completeness of the information included in the Report Neither ACER

TSO H2 acceptance, limits, projects

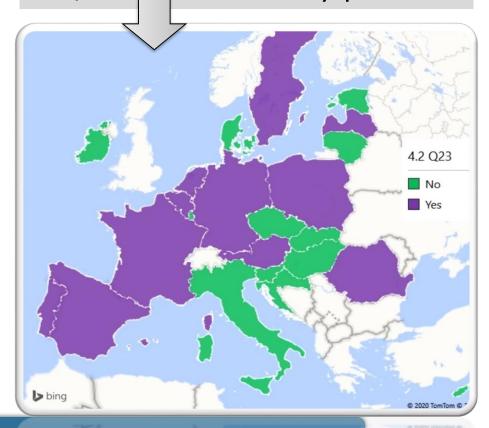
- Safety and tolerances of network and end-use equipment main reasons for setting H2 limits
- Most MS do not offer specific incentives for TSOs for H2 projects, but in some MS ongoing consultations
- 9 NRAs report projects to increase H2 acceptance at TSO level.


TSO H2 blending targets, cooperation, EU approach

- No MS H2 blending targets, but ongoing discussions
- H2% limits not yet part of interconnection agreements
- 90% of NRAs mostly agree that H2 blending limits should be decided at EU level if different H2 blending limits at transmission level would be a barrier for trading
- Creating 100% H2 networks is the way to optimise the economic value of H2.
- H2 blending temporary / transitional
- H2 blending and 100% H2 networks not mutually exclusive (parallel development possible)

Type of H2 injection and projects

- Most MS did not (yet) start discussions on location of H2 injection points
- Most projects are "pilots", sometimes in partnership with the TSO
- H2 small concentrations possible even if H2 not injected (gas imported)
 - Type of H2 injection:
 - » Premix of gases
 - » Direct injection

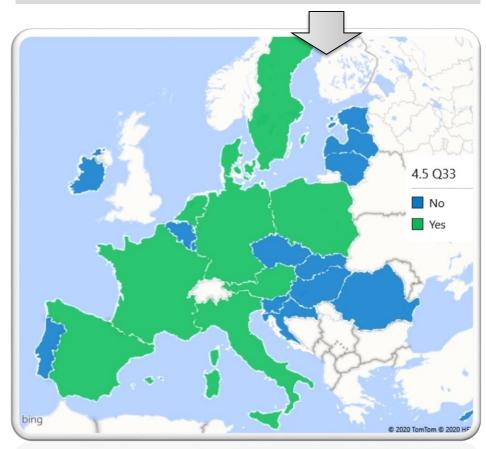


100 % H2 networks & regulation

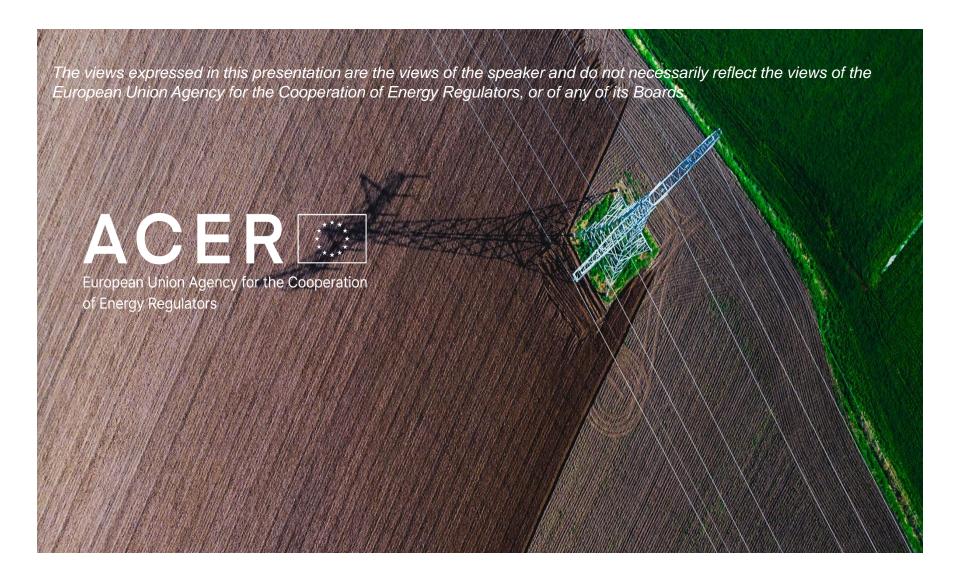
- BE, FR, DE, NL have 100%
 H2 non-regulated networks
 for industrial purposes (e.g. supply to refineries), operated by private entities (e.g. Linde, Air Liquide).
- Only few MS report plans to develop 100% H2 pipelines/networks
- Regulatory framework is generally not (yet) available, to be steered by clear policy vision on H2.
- Unbundling issues intervene in the role of TSOs regarding H2

H2 strategies

 H2 strategies (published, or under development), including as part of NECPs /Covid-19 recovery plans



Biomethane acceptance


- Injection of biomethane (~= CH4) appears not to be problematic
- DK, FR, DE, IT, ES, NL and SE have injections of biomethane at TSO level
- 7 NRAs report investments in NDPs to allow/increase biomethane injections
- 15 NRAs report network operators obligations to provide a connection point for biomethane injection
- Biogas producers generally responsible for gas quality upgrading

Is there reverse flow (from distribution to transmission grid) and/or direct injection from biogas /biomethane plant?

- Readiness of gas transmission networks to accept H2 or biomethane is very diverse across the EU.
- Developments are at an early stage, driven mainly by pilot projects.
- Most NRAs would support an EU-wide approach for setting H2 admixing limits, in pursuit of smooth x-border gas flows& trading
- 100% H2 networks could be built in parallel with blending of H2, depending on specific market and network situation.
- Gas quality standards (network, IPs) may need to be revised to ensure interoperability of H2 admixtures across borders
- Needed network adaptations and investments (H2 metering, CS configurations, injection facilities for H2 and biomethane) deserve greater attention in network plans.
- H2 blending would not initially require major changes in the current market design and legislation.

Thanks for your attention