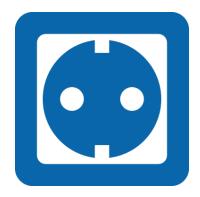


ACER-ECRB Workshop: 70% Minimum Capacity

Regulation 2019/943


Relevant Provisions of Regulation 2019/943

CE-CONTROL Energy for our future.

Sets 70% as minimum capacity to be made available for cross-zonal trad. Applicable from 1 January 2020.

- Entered into force 4 July 2019
- Provisions applicable from 1 January 2020
- Distinguishes between
 - Coordinated net transfer capacity (CNTC) cross-zonal capacity calculation (Article 16(8)(a)), and;
 - Flow-based cross-zonal capacity calculation (Article 16(8)(b))
- Requires that at least 70% are offered
 - Maximisation principle still applies → 70% are not a ceiling but a floor!
- Up to 30% can be used for reliability margins, loop flows and internal flows.
 - These flow types are not defined further.

ACER Recommendation 01/2019

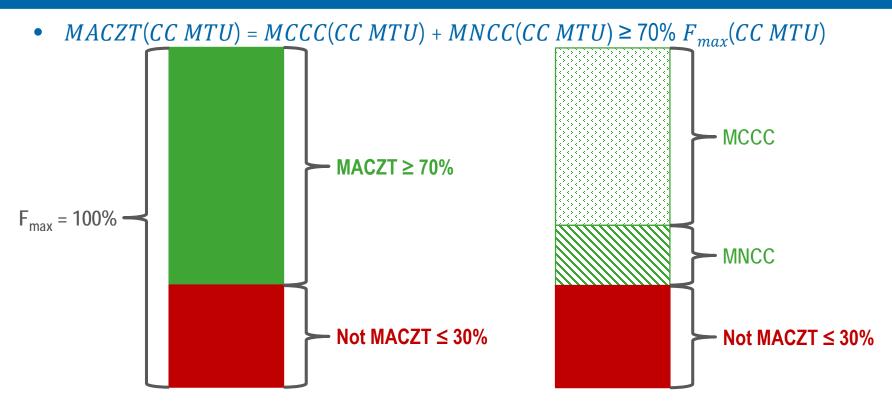
ACER Recommendation No 01/2019 – Basic Principles

Describes monitoring of capacity made available for cross-zonal trade. F_{max} serves as reference.

- Issued on 8 August 2019
- Regardless of whether flow-based of CNTC cross-zonal capacity calculation, monitoring should focus on critical network elements (CNEs) under contingency (CNECs) used in capacity calculation
 - CNECs hold information on operational security limits (F_{max}) , which serve as the reference for 70%
- Motivation: CACM GL requires both flow-based and CNTC to be based on CNECs (Article 29)
- Focuses on data available once capacity calculation methodologies (CCMs) pursuant to CACM GL are implemented
 - Core Day-Ahead and Intraday CCM serves as a role model
- Not addressed:
 - Methodology for monitoring capacity made available before CCMs are implemented and data is available (e.g. bilateral NTC calculation not based on CNECs)
 - Allocation constraints (e.g. ramping constraints on HVDC interconnectors)

ACER Recommendation No 01/2019 – Some Detail

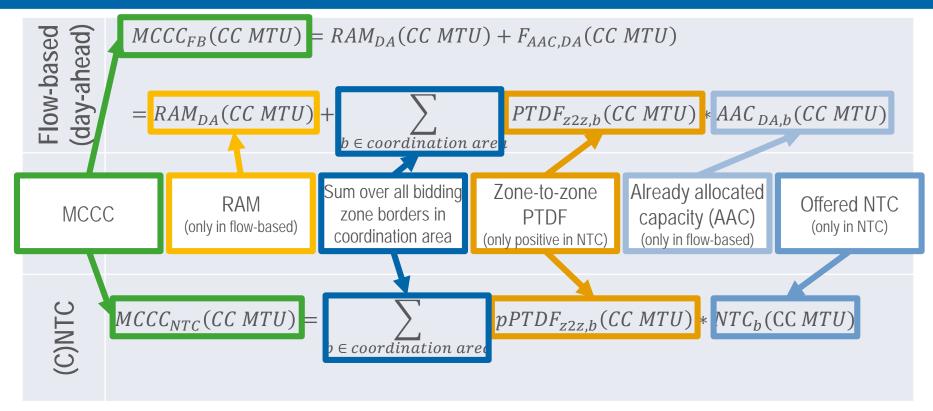
Two components make up the margin considered for assessing 70%.



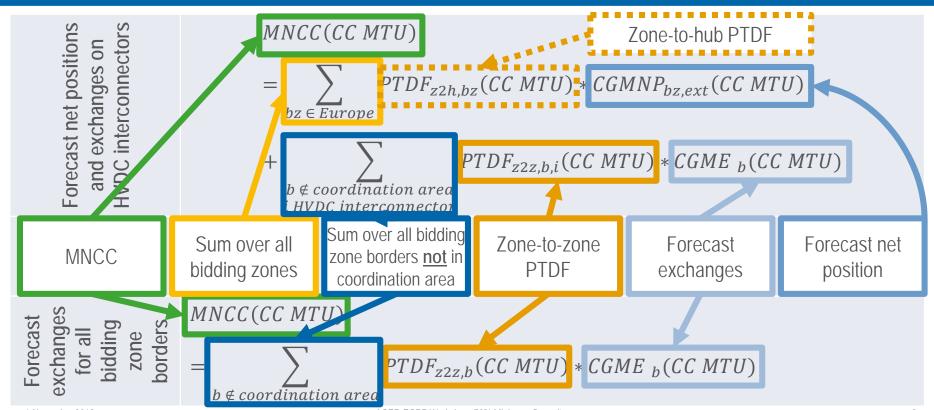
- The aim is to determine the "margin available for cross-zonal trade" (MACZT)
- MACZT is made up of two components:
 - "margin from coordinated capacity calculation" (MCCC), and;
 - "margin from non-coordinated capacity calculation" (MNCC)
- "Coordination areas" are sets of bidding zone borders, for which cross-zonal capacity calculation is performed in a coordinated manner (such as CWE, Italy North, or bilateral NTC)
- MCCC and MNCC are calculated for
 - every CNEC, and;
 - every market time unit (MTU)
 - in all coordination areas
- $MACZT(CC\ MTU) = MCCC(CC\ MTU) + MNCC(CC\ MTU) \ge 70\%\ F_{max}(CC\ MTU)$

ACER Recommendation No 01/2019 – Illustration

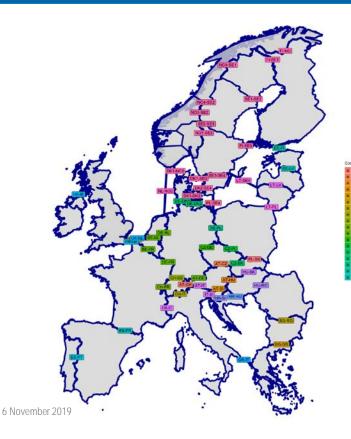
MACZT is comprised of two parts: MCCC and MNCC.



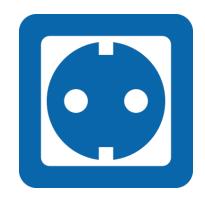
ACER Recommendation No 01/2019 – MCCC


Computation per CNEC and Market Time Unit (MTU). Already allocated capacity considered.

ACER Recommendation No 01/2019 – MNCC

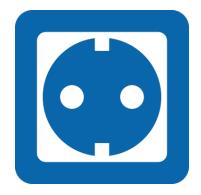

Computation per CNEC and Market Time Unit (MTU). Forecast exchanges not readily available.

ACER Recommendation No 01/2019 – Coordination Areas


Computation of MACZT requires definition of coordination areas.

- State of play:
 - Few coordination areas with more one bidding zone border:
 - CWE
 - Italy North
 - (Nordic)
 - Bilateral NTC calculation dominant
- Coordination areas are going to correspond to capacity calculation regions, once capacity calculation methodologies are implemented

Third Countries


Consideration of 3rd Countries

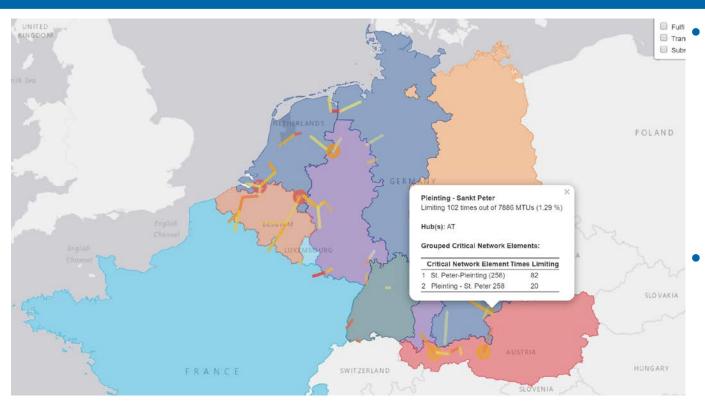
Basic principles laid down in letter from EC.

- EC letter dated 16 July 2019
 - "... The Commission therefore considers that consideration of third country flows in capacity calculation should be possible on the condition that an agreement has been concluded by all TSOs of a CCR with the TSO of a third country. ..."
 - "The final agreement should be fully in line with EU capacity calculation principles and rules and cover at least the following:
 - 1) consideration of internal third country constraints for intra-EU capacity calculation,
 - 2) consideration of EU internal constraints for capacity calculation on the border with third country, and
 - 3) cost-sharing of remedial actions"
 - If such an agreement is struck, flows from/to 3rd countries can be taken into account when assessing 70%
- Discussions on 'technical agreement' with Switzerland ongoing

Example

Pleinting - St. Peter 258

Cross-zonal CNE on DE-AT bidding zone border. Observe: CNE is directed.


- CNE:
 - Pleinting St. Peter 258
- Associated contingencies:
 - (BASECASE)
 - Simbach St. Peter
 - Pirach St. Peter
 - Schwandorf Plattling
 - Duernrohr Kronsdorf
 - Etzersdorf Kronsdorf
 - Tauern PST

Pleinting - St. Peter 258

Assigned to coordination area CWE. Occasionally limiting exchanges in CWE in day-ahead market coupling.

- Comprised of bidding zone borders:
- AT-DE
- BE-FR
- BE-NL
- DE-FR
- DE-NL
- Only coordination area with operating flow-based capacity calculation and allocation

15

Pleinting - St. Peter 258 – MCCC

Example data for 25 September 2019 MTU 9. Computation of MCCC normalised by F_{max} .

 $MCCC_{FB}(CC\ MTU) = RAM_{DA}(CC\ MTU) +$ $PTDF_{z2z,b}(CC\ MTU) * AAC_{DA,b}(CC\ MTU)$ $b \in coordination$ area

RAM ~ 310 – 463 MW


Long-term nominations = 0

Contingency	F _{max}	RAM	AT-DE	DE-AT	BE-NL	NL-BE	DE-NL	NL-DE	BE-FR	FR-BE	FR-DE	DE-FR	ИССС
BASECASE	656	459	0	0	0	0	0	0	0	0	0	0	0.70
Simbach - St. Peter 233/230	656	459	0	0	0	0	0	0	0	0	0	0	0.70
Simbach - St. Peter 234/230	656	459	0	0	0	0	0	0	0	0	0	0	0.70
Pirach - St. Peter 256	656	456	0	0	0	0	0	0	0	0	0	0	0.70
Schwandorf - Plattling 465	656	448	0	0	0	0	0	0	0	0	0	0	0.68
Duernrohr - Kronsdorf 433	656	454	0	0	0	0	0	0	0	0	0	0	0.69
Etzersdorf - Kronsdorf 434A	656	463	0	0	0	0	0	0	0	0	0	0	0.71
Tauern PST (TAPST)	656	310	0	0	0	0	0	0	0	0	0	0	0.47

Pleinting - St. Peter 258 – MNCC

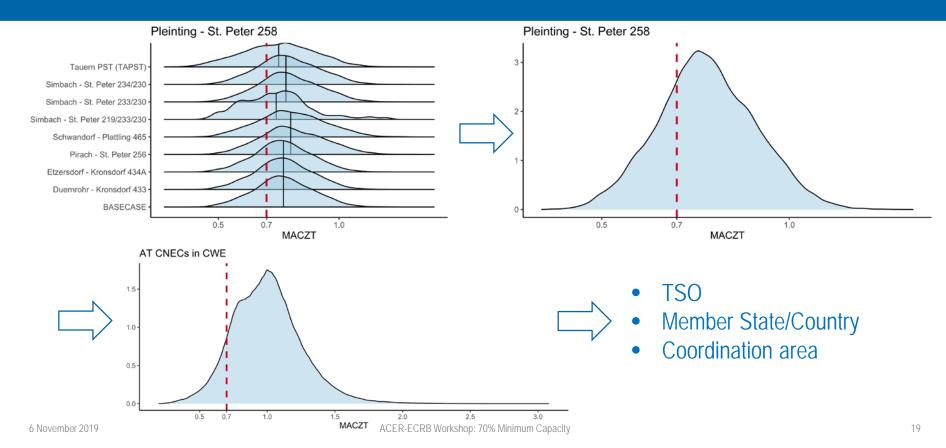
Example data for 25 September 2019 MTU 9. Computation of MNCC normalised by F_{max} .

Contingency	F_{max}	RAM	AT-CZ	•••	SI-SK	AT-CZ	•••	SI-SK	MNCC
BASECASE	656	459	PTDF	•••	PTDF	500	•••	0	0.50
Simbach - St. Peter 233/230	656	459	PTDF	•••	PTDF	500	•••	0	0.31
Simbach - St. Peter 234/230	656	459	PTDF	•••	PTDF	500	•••	0	0.31
Pirach - St. Peter 256	656	456	PTDF		PTDF	500	•••	0	0.33
Schwandorf - Plattling 465	656	448	PTDF		PTDF	500	•••	0	0.37
Duernrohr - Kronsdorf 433	656	454	PTDF	•••	PTDF	500	•••	0	0.07
Etzersdorf - Kronsdorf 434A	656	463	PTDF	•••	PTDF	500	•••	0	0.25
Tauern PST (TAPST)	656	310	PTDF		PTDF	500	•••	0	0.34

Pleinting - St. Peter 258 – MACZT

Example data for 25 September 2019 MTU 9. Finally: MACZT normalised by F_{max} .

18


 $MACZT(CC\ MTU) = MCCC(CC\ MTU) + MNCC(CC\ MTU) \ge 70\%\ F_{max}(CC\ MTU)$ MCCC MNCC

Contingency	F_{max}	RAM	MCCC	MNCC	MACZT
BASECASE	656	459	0.7	0.50	1.20
Simbach - St. Peter 233/230	656	459	0.7	0.31	1.01
Simbach - St. Peter 234/230	656	459	0.7	0.31	1.01
Pirach - St. Peter 256	656	456	0.7	0.33	1.03
Schwandorf - Plattling 465	656	448	0.68	0.37	1.05
Duernrohr - Kronsdorf 433	656	454	0.69	0.07	0.76
Etzersdorf - Kronsdorf 434A	656	463	0.71	0.25	0.96
Tauern PST (TAPST)	656	310	0.47	0.34	0.81


Aggregation

Outlook

Challenges ahead

Data provision and quality to be improved. More applicable once CCMs and CGM is in place.

Data provision

 ENTSO-E Transparency Website and JAO do not provide all required data (e.g. forecast exchanges, z2z PTDFs for coordination areas other than CWE)

Applicability

- Several CCMs implemented before CACM GL and used today are not based on CNECs
- ACER Recommendation based on data which is (partly) first available once CCMs are implemented
- Forecasts and assumptions in capacity calculation first fully aligned among all TSOs when CGM is implemented

Third Countries

- Discussions on agreement with CH ongoing among EC and neighbouring Member States
- When are you joining? You may already want to start hiring data analysts.

REINHARD KAISINGER

+43 1 24724 513

reinhard.kaisinger@e-control.at

www.e-control.at

Energy for our future.

E-Control

Rudolfsplatz 13a, 1010 Wien

Tel.: +43 1 24 7 24-0

Fax: +43 1 247 24-900

E-Mail: office@e-control.at

www.e-control.at

Twitter: www.twitter.com/energiecontrol

Facebook: www.facebook.com/energie.control

