The Fine Line Between
Regulatory Independence And
Protection Of Investor Rights
VIEW OF PARETO EFFICIENCY
PRESENTED TO

PRESENTED BY

Jack Stirzaker

Energy Community

26 September 2018

Agenda

Stability vs Adaptability

Pareto Efficiency

- —Concept
- Application to Policy Decisions

Conclusions

Stability vs Adaptability

Can be attractive for state to give long-term commitments:

- Energy infrastructure often long lived
- Capital intensive/Large up-front investments
- Benefit: Stability for investors
 - Lower risk = lower return = lower end-user prices

Regulatory intervention should be:

- —Independent
- —In the best interest of system
- Benefit: Adaptability to changing conditions

Q: Can competing interests be reconciled?

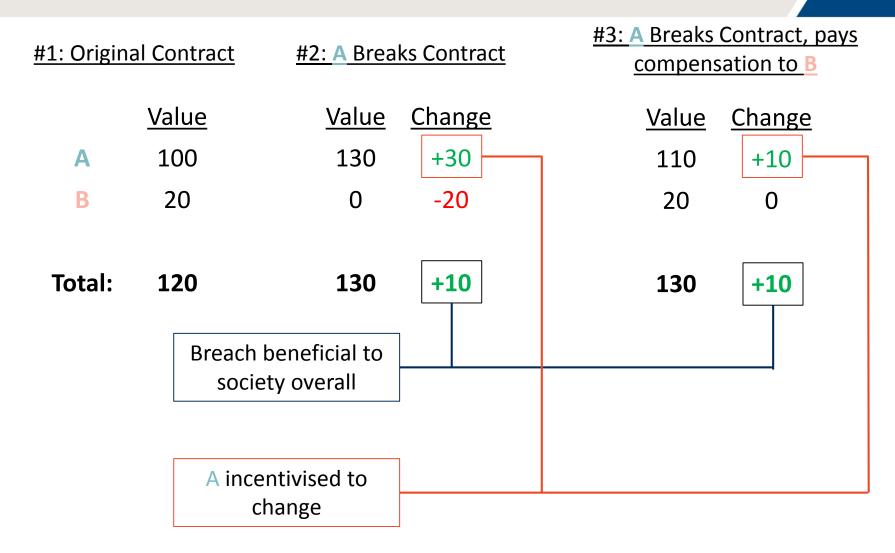
Pareto Efficiency

Pareto was an engineer and economist who studied efficient resource allocation

Efficiency means gain to "winners" exceed losses to "losers"

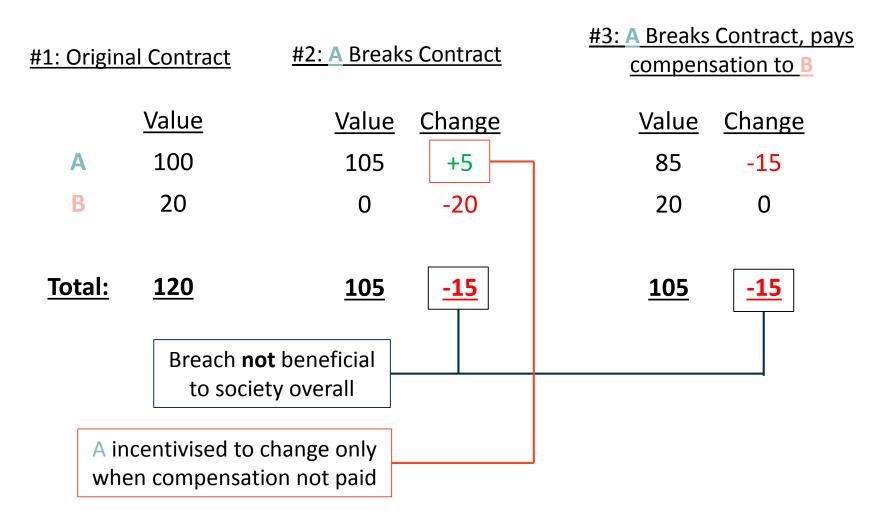
- Any efficient change must have scope to compensate
 - "Winners" compensate "losers"

"Pareto Improvement" is a change in which:


- At least one party is better off
- No party is worse off

Pareto Efficiency Example: Efficient Breach

- A signed contract for delivery of widgets to B
 - Contract worth 100 to A, 20 to B
- C urgently requires widgets
 - willing to pay 130 to A;
 - —A cannot satisfy both parties.


What should A do?

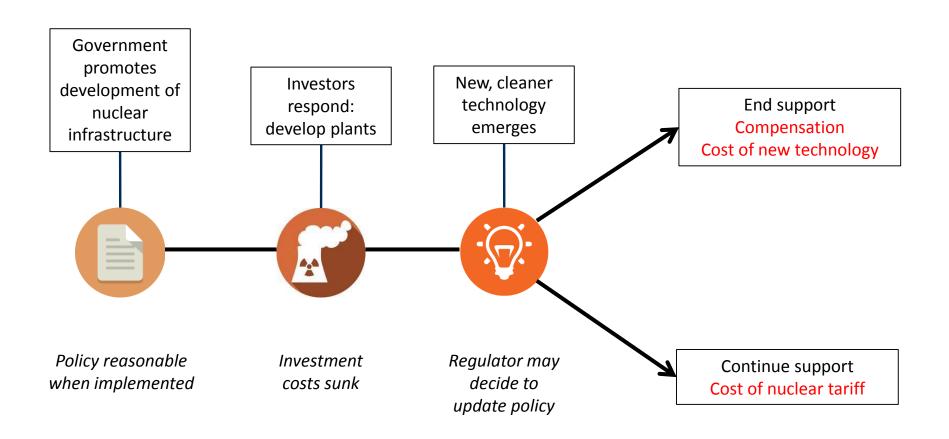
Pareto Efficiency Example: Efficient Breach

Pareto Efficiency **Example: Inefficient Breach**

What if C can only offer 105 to A?

Pareto Efficiency in Policy

Same principles apply to Regulatory intervention


 Regulators will find it attractive to "breach contract" if it represents gain to system as a whole

Payment of compensation does not make any <u>efficient</u> policy change unattractive

 If change represents net gain, benefits must be sufficient to compensate losers

Compensation only disincentivises <u>inefficient</u> policy choices

Pareto Efficiency in Policy Example: Nuclear Power

Pareto Efficiency in Policy Example: Nuclear Power

Economic view: Switch in technology efficient when present value (PV) of cost of new technology is less than PV of future operating costs of nuclear

PV Cost _{New Tech} < PV Opex _{Nuclear}

Regulatory view to switch when:

Cost of Ending Support < Cost of Continuing Support

Compensation + PV Cost _{New Tech} < PV Tariff _{Nuclear}

PV Cash Flows _{Nuclear}+ PV Cost _{New Tech} < PV Tariff _{Nuclear}

(PV Tariff _{Nuclear} - PV Opex _{Nuclear}) + PV Cost _{New Tech} < PV Tariff _{Nuclear}

PV Cost _{New Tech} < PV Opex _{Nuclear}

Compensation aligns incentives

Pareto Efficiency in Policy Arbitration

Arbitration seeks to understand what commitments were made

- What was risk allocation at outset, e.g.:
 - Which party bears technology risk
 - Which party bears interest rate risk
- Often: were such commitments reasonable

Not necessary to measure efficiency of breach for damages quantification

State bears gain/loss of policy change

Sovereign rights infringed only on mistaken finding of fact about nature of initial commitment

Conclusions

State sovereignty includes ability to make commitments

Ignoring prior commitments actually undermines sovereignty

Requirement for compensation does not necessarily mean Regulator acted inappropriately or in bad faith

— Not a fine (tort), but recognition of earlier commitment

As long as compensation is *not* punitive, it will not make any future efficient policy choice unattractive

Only inefficient choices unattractive

Q: Can competing interests be reconciled?

-A: Yes: and compensation (in some form) is key

