

RES alternatives and e-mobility

Support mechanisms for RES integration & flexibility mechanisms and innovative technologies

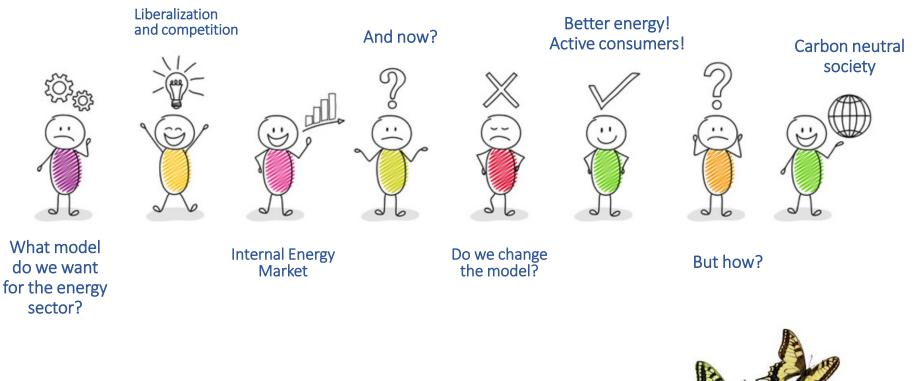
ERSE 18 October 2022

- 1. Energy transition to a carbon neutral society by 2050
- 2. The Solar PV Auctions in Portugal (2019, 2020 and 2022)
- 3. E-Mobility model in Portugal
- 4. Renewable and low-carbon gases
- 5. Flexibility: the power sector challenge

European vision and strategy

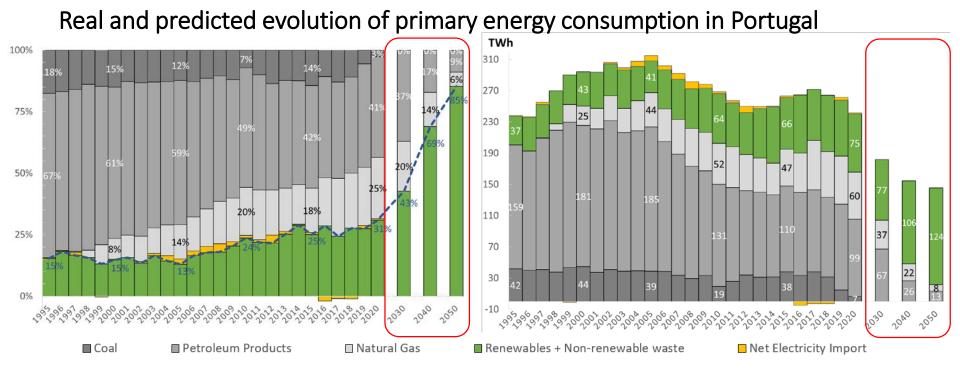
Ambition in the goals of the European Union: Carbon neutrality by 2050!

Strategy from European Regulators (CEER): Empowering consumers for the energy transition (2022-2025)


3 fundamental axes for decarbonisation:

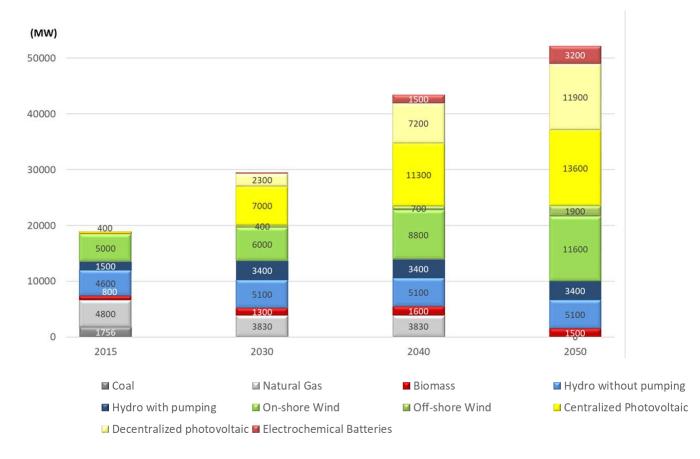
- Internal Energy Market (integration of markets in the European dimension)
- **Decentralization and local flexibility** (local energy economy)
- Integration of energy vectors (circular energy economy)

European vision and strategy


The energetic transition/metamorphosis A transformational process

A process that started 30 years ago and is now projected for the next 30 years

Portuguese Roadmap for energy transition to a carbon neutral society by 2050



- Coal out from the Portuguese energy mix during 2021
- Renewables will increase from 31% to 85% until 2050
- An increase of 40% on energy efficiency will reduce the overall primary energy consumption from 240 to 145 TWh/year until 2050
- Energy dependence will reduce from 66% to 15% until 2050

Portuguese Roadmap for energy transition to a carbon neutral society by 2050

Installed capacity evolution from the different power generation technologies

- The energy transition will be based on a strong commitment with energy efficiency and with electrification of society
- Only CO₂ hard-to-abate industrial sectors and specific mobility niches will need other alternative renewables fuels

Energy efficiency first! Benefits from Decentralisation and Distributed Energy Resources

Electric technologies are more efficient and allow direct and decentralized use of renewable energy sources

Heat Pumps

Distributed Energy Resources ensure the decentralization of the electrical system, local integration and the development of a proximity economy for energy

Distributed Energy Resources

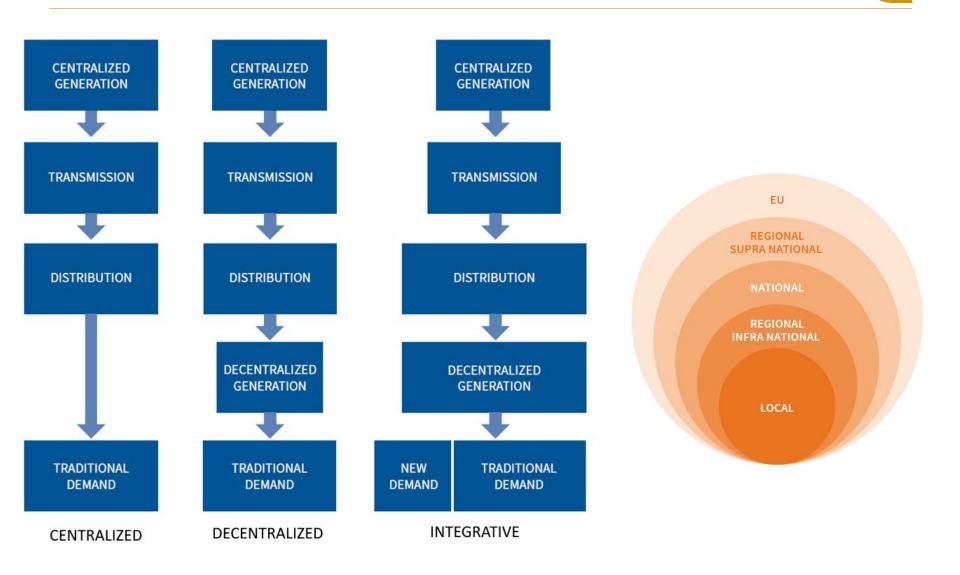
Distributed Generation technologies from renewable energy sources

Self-generation

Electric Vehicles

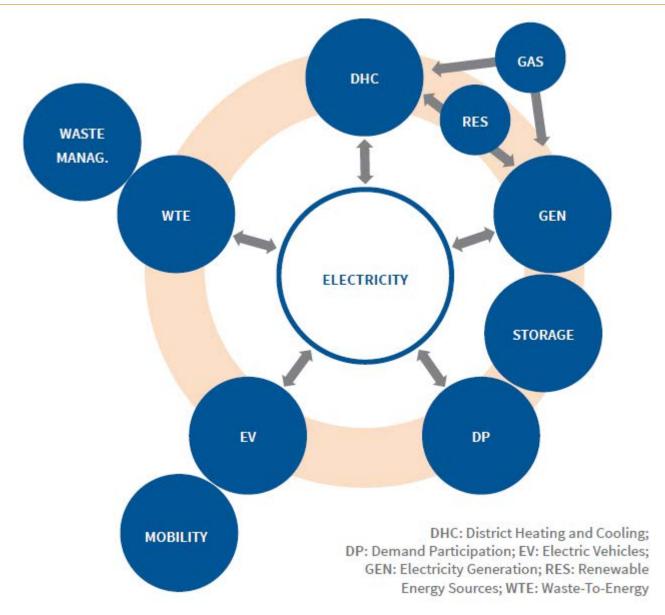
Emerging battery technologies

Digitalisation



Net Zero Energy Buildings

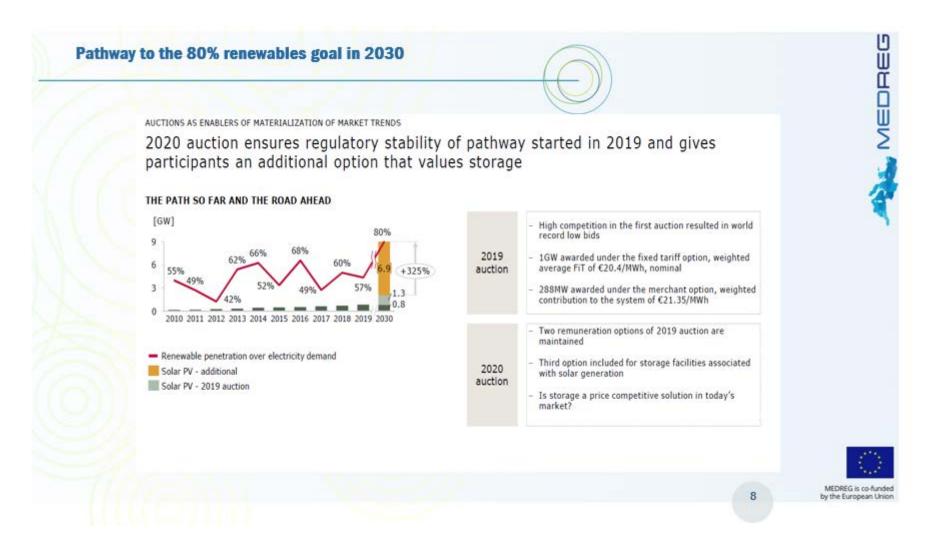
The evolution of the Electricity System



8

Electricity as a platform for Energy System Integration

9



Source: "EU Electricity Reform", Jorge Vasconcelos, NEWES, May, available at https://fsr.eui.eu/wp-content/uploads/2022/05/eu_electricity_reform_may2022.pdf

- 1. Energy transition to a carbon neutral society by 2050
- 2. The Solar PV Auctions in Portugal (2019, 2020 and 2022)
- **3.** E-Mobility model in Portugal
- 4. Renewable and low-carbon gases
- 5. Flexibility: the power sector challenge

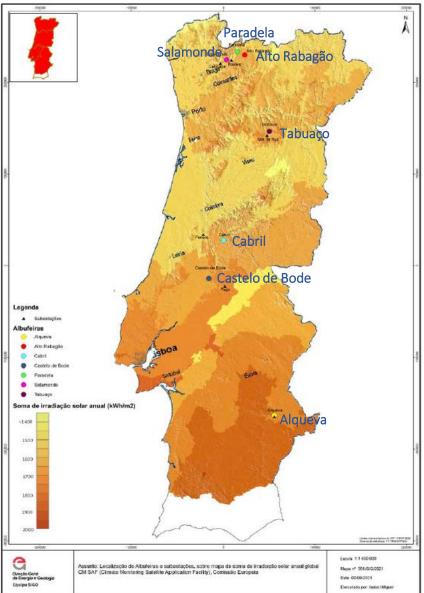
The 2019 and 2020 Solar PV Auctions in Portugal

Source: Presentation "Balancing mechanism – The Portuguese case" from Pedro Verdelho at the MEDREG – ECRB Joint Workshop on "Integrating RES in the Electricity Networks and Balancing Mechanism in MEDREG and ECRB Regions" – 15 April 2021

The 2019 and 2020 Solar PV Auctions in Portugal

2020 Solar PV Auction results Capacity Merchant (No Merchant Merchant (No Storage) Fixed Tariff Merchant (With Storage) VAL Fixed Tariff Batch **Revenue Scheme** Winner Awarded (With Storage) Storage) MVA MVA €/MVA/Ano MVA % MVA % €/MVA/Ano €/MVA/Ano €/MWh €/MWh €/MWh Merchant (No Storage) Green Show - Lda 99 99 72 976.5 0 0 903 616 1 -37.27 2 Merchant (With Storage) Hanwha Q Cells GmbH 109 0 0 109 207.33% -35 968 795 306 -18,38 3 Merchant (With Storage) Endesa Generación Portugal, S.A. 99 0 0 99 187,93% -29 467 721 005 -15,06 Green Show - Lda 54 54 0 978 437 -40.36 Merchant (No Storage) 79 019.1 0 4 Merchant (No Storage) Green Show - Lda 4 4 75 873.9 0 0 939 493 -38,75 Merchant (With Storage) Hanwha Q Cells GmbH 50 0 0 50 255.02% -51 992 978 437 -26,55 0 69 148,18% -16 146 568 763 5 Merchant (With Storage) Iberdrola Renewables Portugal, S.A. 69 0 -8,25 6 Merchant (With Storage) Hanwha Q Cells GmbH 99 0 0 99 244,86% -48 585 939 493 -24,81 7 Fixed Tariff Solarengoradar - Unipessoal, Lda. 10 0 10 73,30% 0 685 441 11.14 795 306 -32,82 8 Merchant (No Storage) TAGENERGY SA 10 10 64 229,3 0 0 9 Merchant (No Storage) TAGENERGY SA 10 10 64 229,3 0 0 795 306 -32,82 10 Merchant (With Storage) Hanwha Q Cells GmbH 19 0 19 187,93% -29 467 721 005 -15.06 0 0 903 616 11 Merchant (With Storage) Hanwha Q Cells GmbH 19 0 19 235,50% -45 445 -23,21 12 Merchant (With Storage) Hanwha Q Cells GmbH 19 0 0 19 276,31% -59 133 1 060 043 -30,20

	Total (MVA)	# Batchs	Revenue scheme
Endesa Generación Portugal, S.A.	99	1	Merchant (With Storage)
Green Show - Lda	157	2	Merchant (No Storage)
Hanwha Q Cells GmbH	315	6	Merchant (With Storage)
Iberdrola Renewables Portugal, S.A.	69	1	Merchant (With Storage)
Solarengoradar - Unipessoal, Lda.	10	1	Fixed Tariff
TAGENERGY SA	20	2	Merchant (No Storage)



12

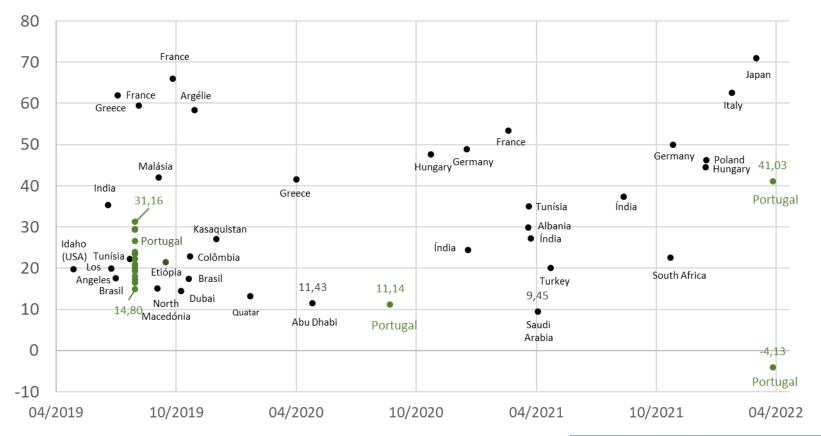
Source: Presentation "Balancing mechanism – The Portuguese case" from Pedro Verdelho at the MEDREG – ECRB Joint Workshop on "Integrating RES in the Electricity Networks and Balancing Mechanism in MEDREG and ECRB Regions" – 15 April 2021

9

The 2022 Floating Solar PV Auction in Portugal

Sites locations and characteristics

Lote	Albufeira	Subestação de ligação/Posto de	Nível de tensão	Disponibilidade da capacidade	Capacidade de receção disponível
		Corte	[kV]	de receção	[MVA]
1	Alqueva	Alqueva	400	Imediata	100
2	Castelo de Bode	Pego	400	Imediata	50
3	Cabril	Penela	60	31.12.2023	33
4	Alto Rabagão	Frades	60	31.12.2023	42
5	Paradela	Frades	60	31.12.2023	13
6	Salamonde	Caniçada	60	31.12.2023	8
7	Tabuaço	Vila da Rua	60	31.12.2023	17

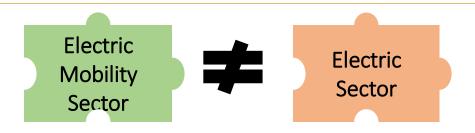


Results

Lote	Localização	Concorrente ganhador	VAL (€/MVA)	Capacidade Adjudicada (MVA)	Compensação Fixa ao SEN (€/MVA/Ano)	Prémio Variável por Diferenças (%)	Compensação Fixa ao SEN (€/MWh)	Prémio Variável por Diferenças (€/MWh)
1	Alqueva	EDP Renewables, SGPS, S.A.	956612	70		110,00		-4,13
3	Cabril	Voltalia Portugal, S.A.	9332	33		1,01		41,03
4	Alto Rabagão	Endesa Generación Portugal S.A.	557630	42	45713,10		25,70	
5	Paradela	Finerge S.A.	47990	13	3934,10		2,27	
6	Salamonde	Finerge S.A.	94892	8	7779,00		4,49	
7	Tabuaço	Finerge S.A.	1260128	17	103302,00		57,26	

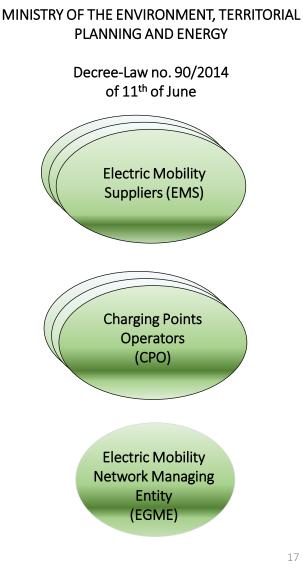
Promotor	Total (MVA)	# Lotes	Modalidade
EDP Renewables, SGPS, S.A.	70	1	Prémio Variável por Diferenças
Voltalia Portugal, S.A.	33	1	Prémio Variável por Diferenças
Endesa Generación Portugal S.A.	42	1	Compensação Fixa ao SEN
Finerge S.A.	38	3	Compensação Fixa ao SEN

Results from worldwide Solar PV Auctions 2019-2022



- 1. Energy transition to a carbon neutral society by 2050
- 2. The Solar PV Auctions in Portugal (2019, 2020 and 2022)
- 3. E-Mobility model in Portugal
- 4. Renewable and low-carbon gases
- 5. Flexibility: the power sector challenge

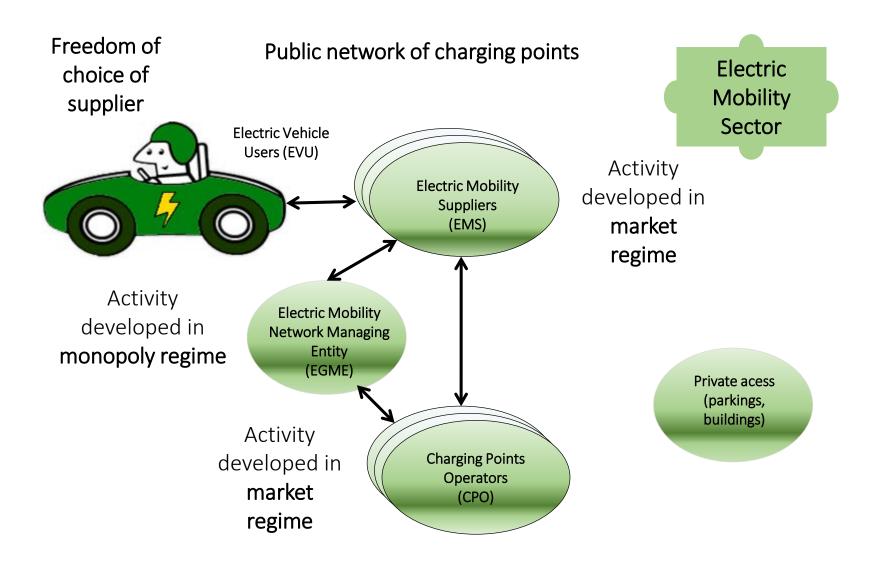
Electric mobility model in Portugal


The main activities destined to assure **public network** of charging points for electric mobility are:

> Selling electricity for electric mobility (EMS);

Operation of charging points of the electric mobility network (CPO);

Operations management of the electric mobility network (EGME).

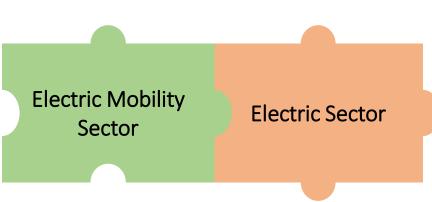

*EMS in PT: CEME CPO or in PT: OPC

Electric mobility model in Portugal

9

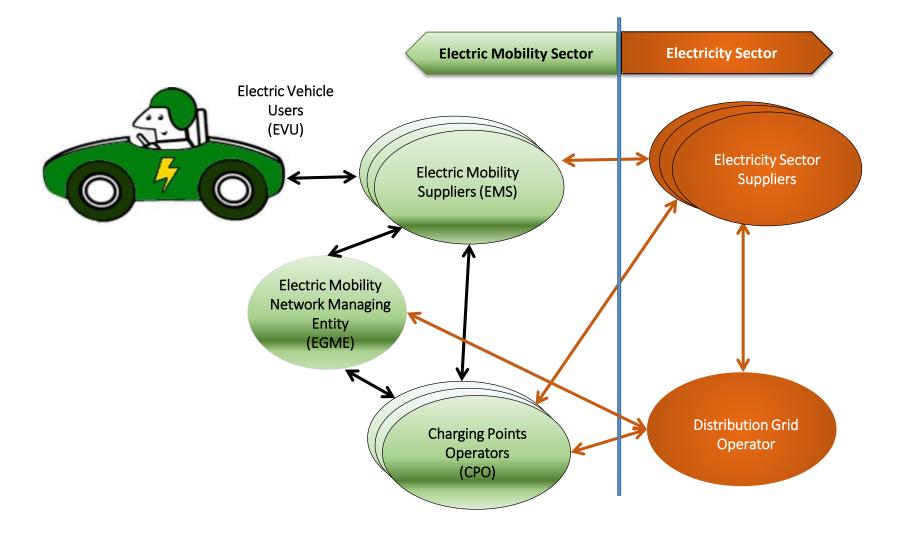
Electric mobility model in Portugal

- Regulation of the model concerning the correct market operation and protection of the consumers of electric mobility (users of electric vehicles)
- Regulation of the activity of the operation management entity of the electric mobility network
- Promotion of the relationship between the operation management entity and the electricity grid operators

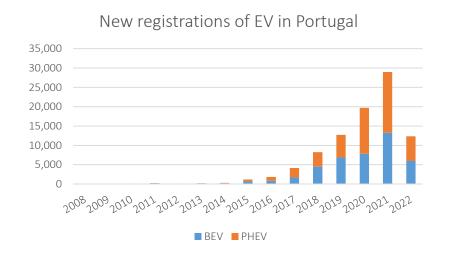

ENERGY SERVICES REGULATORY AUTHORITY

Regulation no. 854/2019 altered by Regulation no. 103/2021

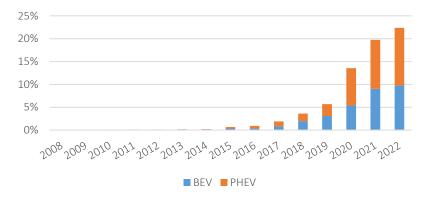
Regulation for electric mobility

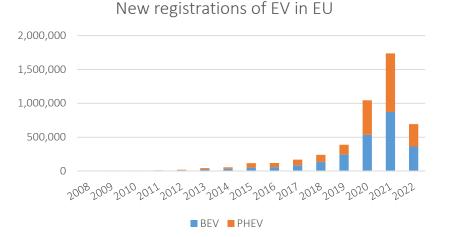


Electric Mobility Network Managing Entity (EGME)

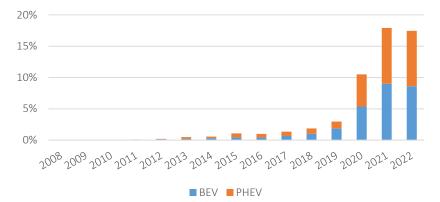


Interactions between the Sector for Electric Mobility and the Electricity Sector

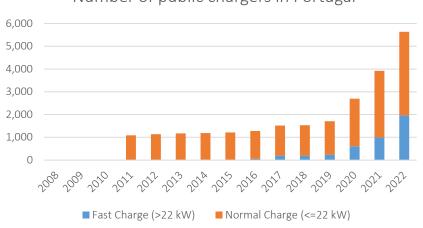


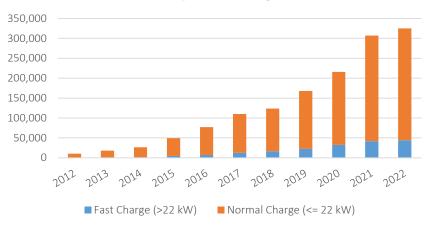


Number of electric vehicles registered in Portugal and Europe (passenger cars M1)

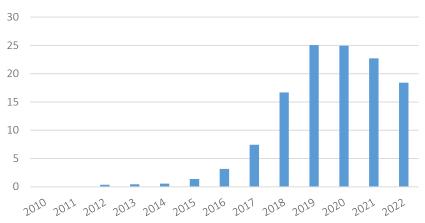


% EV market share of new registrations in Portugal

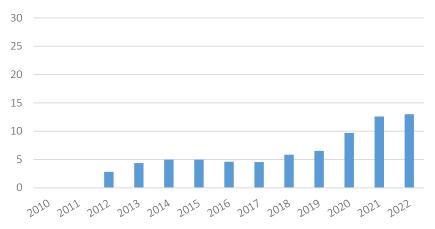

% EV market share of new registrations in EU


Source: "European Alternative Fuels Observatory", <u>https://www.eafo.eu/</u> (13/10/2022)

Number of public chargers in Portugal and EU



Number of public chargers in Portugal



Number of public chargers in EU

EV per public recharging point in EU

Source: "European Alternative Fuels Observatory", https://www.eafo.eu/ (13/10/2022)

- 1. Energy transition to a carbon neutral society by 2050
- 2. The Solar PV Auctions in Portugal (2019, 2020 and 2022)
- **3.** E-Mobility model in Portugal
- 4. Renewable and low-carbon gases
- 5. Flexibility: the power sector challenge

pie?

9

« Clean molecules»: the other half of the

Electrific ation 50-60% Zero-carbon economy by 2050

EU climate targets for 2030

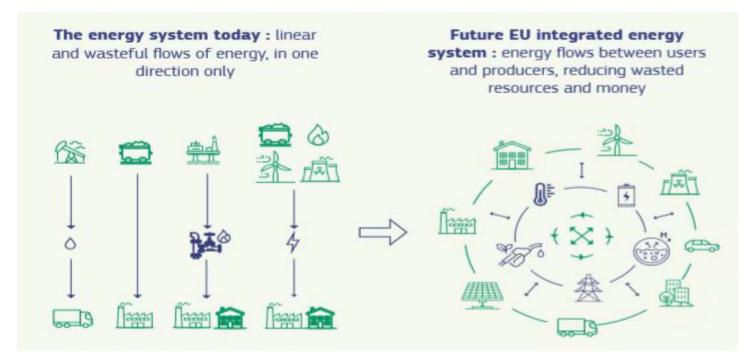
- 55% CO2 emissions cut (SoU proposal)
- 32% gross final RES energy consumption*
- 32,5% energy efficiency

EU Commission's LT strategic vision: deep decarbonisation of the economy requires 50% electrification or more, up to 60% by 2050

Role of gas → support to decarbonisation

- Smaller volumes
- Natural gas as a «back up» (storage, LNG-to-X, etc)
- Clean molecules: biogas, biomethane, synthetic methane, Hydrogen

Source:

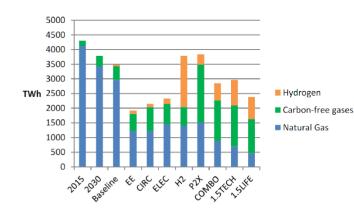


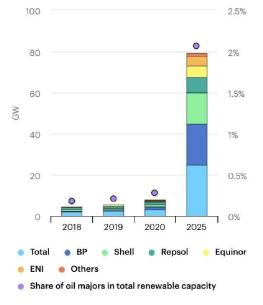
The ESI Strategy

Energy System Integration is

«the coordinated planning and operation of the energy system 'as a whole', across multiple energy carriers, infrastructures and consumption sectors».

Source: EU Commission's Strategy for Energy System Integration, July 2020


Source:



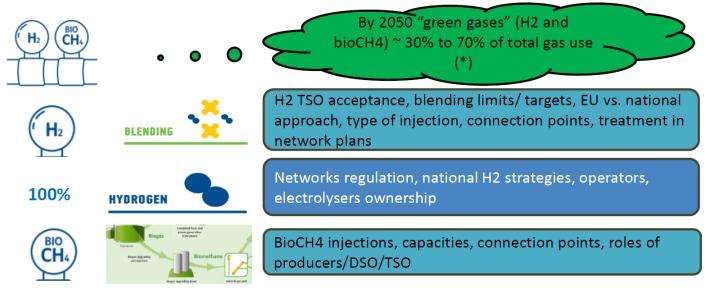
Renewable and low-carbon gases in the path to 2050

Several scenarios and projections see an important role for renewable gases in the path to 2030 and 2050

Installed and contracted renewable capacity by major oil and gas companies, 2018-2025

Source: EU Commission's Long-Term Strategy and OIES

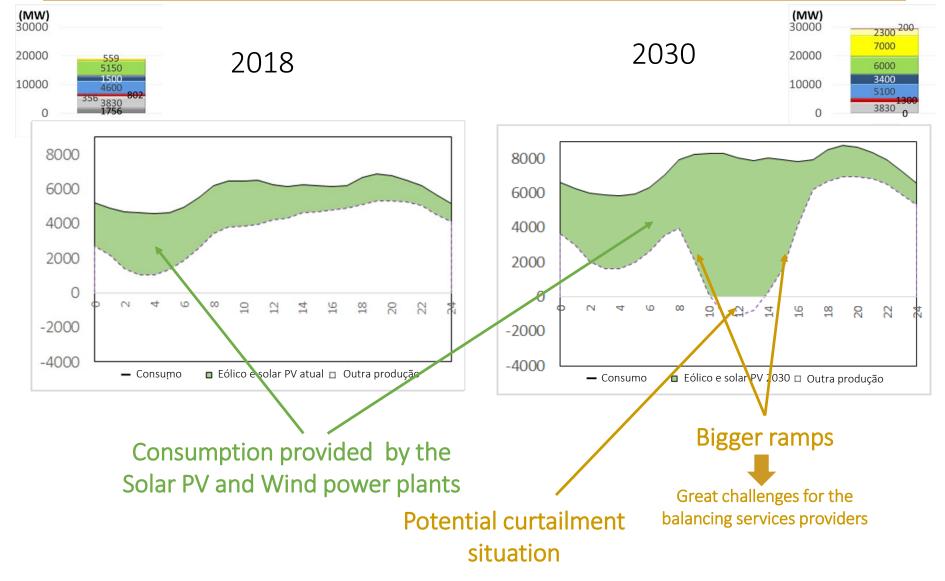
IEA. All Rights Reserved


Role of gas in the future

Which gas infrastructure for H2 and biomethane?

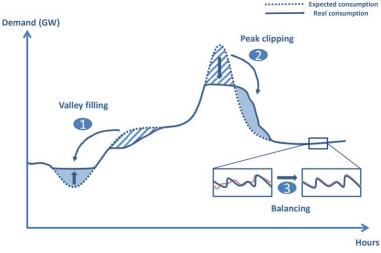
Investigate gas network adaptations for ET: Is gas <u>transmission</u> infrastructure in the EU ready to allow ren. & low-c gases (H2 and biomethane)?

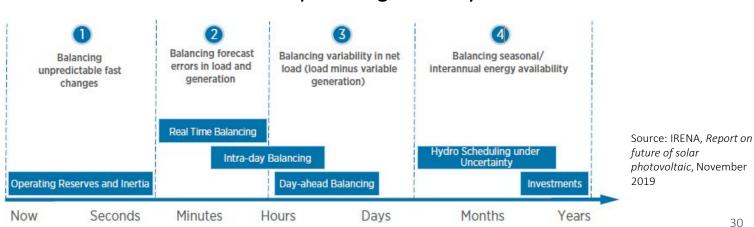
Source:


Available at: <u>link</u> – The Report is based on info provided by energy regulators (NRAs) Published on 10 July 2020, info collected as of 20 May 2020. (*) EUCO Conclusions, 19.12.2019

- 1. Energy transition to a carbon neutral society by 2050
- 2. The Solar PV Auctions in Portugal (2019, 2020 and 2022)
- **3.** E-Mobility model in Portugal
- 4. Renewable and low-carbon gases
- 5. Flexibility: the power sector challenge

The growing importance of the Balancing Market and of the Flexibility Service Providers



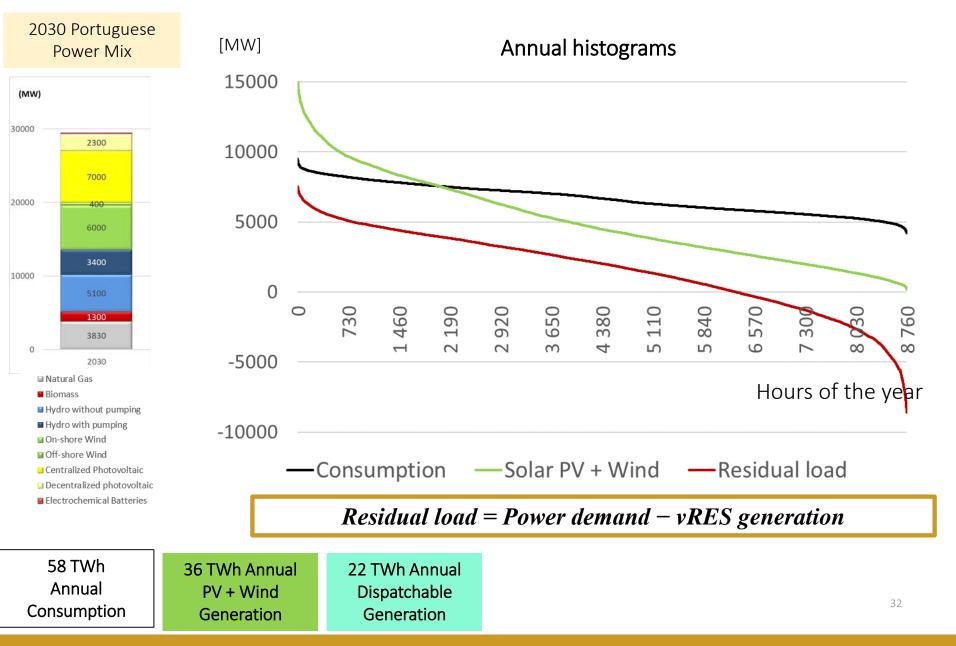

Flexibility: a key for the energy system of the future

Flexibility can be defined as the ability of the electricity system to respond to fluctuations of supply and demand while, at the same time, maintaining system reliability.

At the facility level (generation / consumption / storage), flexibility is the modification of generation injection and/or consumption **patterns** in reaction to an external signal (price signal or activation) in order to provide a service within the energy system. The parameters used to characterise flexibility include the amount of power modulation, the duration, the rate of change, the response time, the location etc.

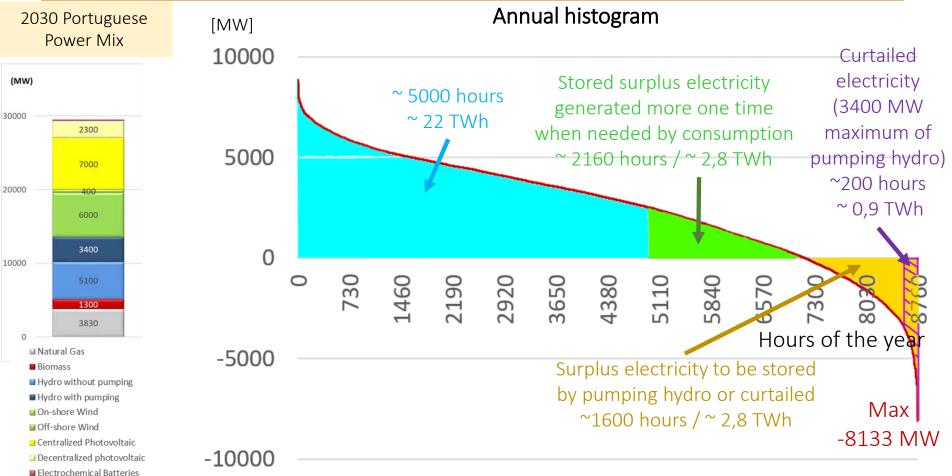
Source: "CEER Advice on Ensuring Market and Regulatory Arrangements help deliver Demand-Side Flexibility, CEER, June 2014

Different time scales for providing flexibility services


The "Residual load"

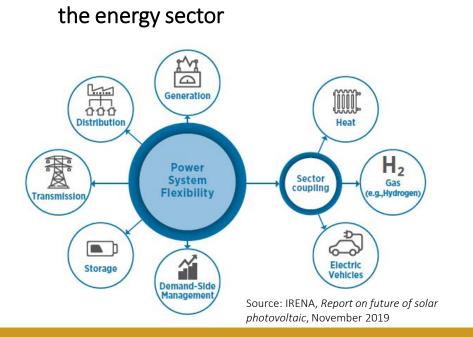
- The increasing penetration of **electricity generation on variable Renewable Energy Sources** (*vRES generation*) will impact the operation of the power system. To accommodate this new power generation, **adequate flexibility technologies** (e.g. storage, international interconnections, DSR demand side response) are required to counterbalance the variations and keep balanced supply and demand at any time.
- In parallel, increasing RES shares may result in a RES generation surplus during an increasing number of hours throughout the year. In case of insufficient system flexibility, this surplus needs to be curtailed.
- The concept of "Residual load" can help to clarify the power system adequacy and the flexibility needs to be made available.
- The "Residual load" is defined as the hourly national demand less the generation from vRES generation and describes the part of the national demand that needs to be met by dispatchable generation units (such as coal, gas, hydro with dam storage and with or without pumping), exchanges with neighbouring countries through international interconnections or storage units.

Residual load = Power demand – vRES generation

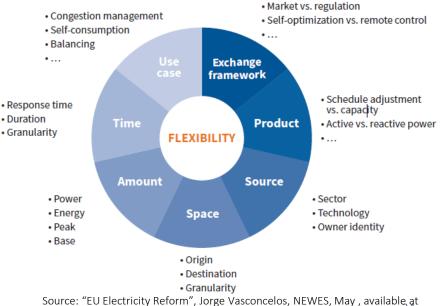

The "Residual load"

The "Residual load"

- Pumping hydro will solve the storing problem of the 2,8 TWh surplus electricity (yellow) generated when PV or wind resources were available and no needed for consumption. After, this stored energy will supply the consumption when needed.
- Hydro and natural gas power plants will generate the additional 22 TWh annual energy needed.
- Any additional solar and wind with the consequent extra storage capability will reduce the use₃of natural gas power plants


Flexibility service providers: a key for the future

Energy Resources with technical flexibility potential



Source: Ahunbay, M., Ashour Novirdoust, A., Bhuiyan, R., Bichler, M., Bindu, S., Bjørndal, E., Bjørndal, M., Buhl, H. U., Chaves-Avila, J. P., Gerard, H., Gross, S., Hanny, L., Knörr, J., Köhnen, C. S., Marques, L., Monti, A., Neuhoff, K., Neumann, C., Ocenic, E., Ott, M., Pichlmeier, M., Richstein, J. C., Rinck, M., Röhrich, F., Röhrig, P. M., Sauer, A., Strüker, J., Troncia, M., Wagner, J., Weibelzahl, M., Zilke, P., 2021, *Electricity Market Design 2030-2050: Shaping Future Electricity Markets for a Climate-Neutral Europe*, https://doi.org/10.24406/fit-n-644366

Power system flexibility enablers in

Flexibility dimensions

Source: EU Electricity Reform", Jorge Vasconcelos, NEWES, May , available at https://fsr.eui.eu/wp-content/uploads/2022/05/eu_electricity_reform_may2022.pdf

Thank you!

EDIFÍCIO RESTELO Rua Dom Cristóvão da Gama, 1, 3º 1400-113 Lisboa **Portugal Tel:** +(351) 21 303 32 00 **Fax:** +(351) 21 303 32 01 • e-mail: erse@erse.pt url: http://www.erse.pt