

This project is funded by the European Union

REGIONAL HYDRO MASTER-PLAN (Hydropower Development Study in the Western Balkans)

Progress report

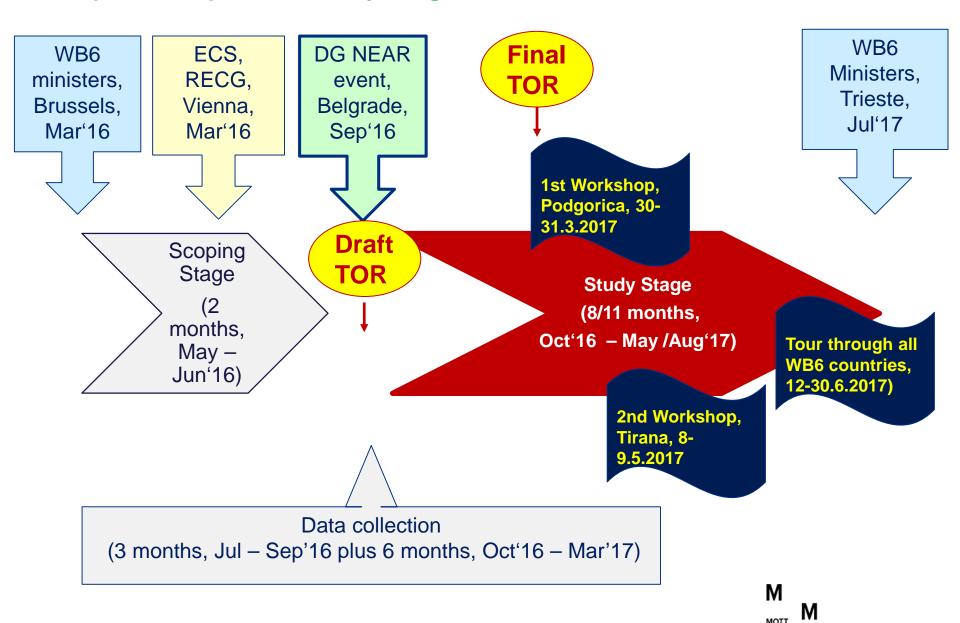
Martyn Osborn - Key Expert, Energy

Marko Kosir - Senior Project Manager & Team Leader

RECG @ ECS Vienna, 07 March 2017

Objective and Purpose

The **overall objective** of this **regional project** (client: DG NEAR) is to contribute to fostering the harnessing of environmentally and climate change sustainable hydropower generation in the WB6 region in line with strategic objectives of the European Union and the ECT obligations of its Contracting Parties.


The **purpose** of the intervention is the development of a study determining a list of hydro power project (HPP) development priorities by (i) river basin, (ii) type of planned HPP facilities (storage, run-of-river, reversible), through which the remaining hydro-power potential in the region will be evaluated, according to the following priority:

- Repair, refurbishment, upgrade and rehabilitaion of existing HPPs
- 2. Sustainable greenfield HPPs

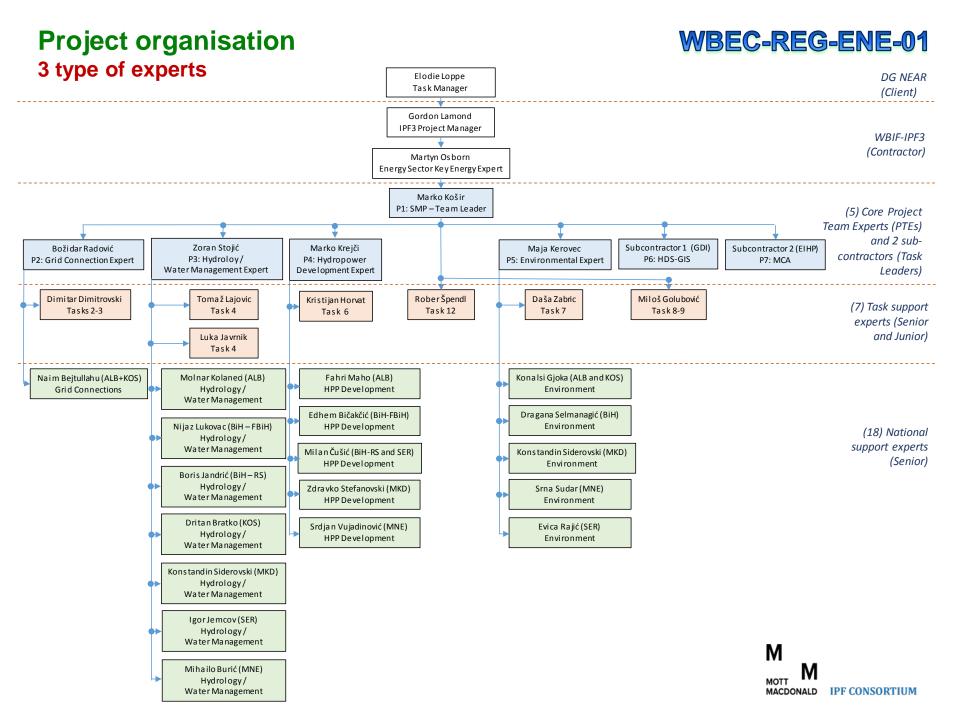
Timeplan – important Study stages and events

WBEC-REG-ENE-01

IPF CONSORTIUM

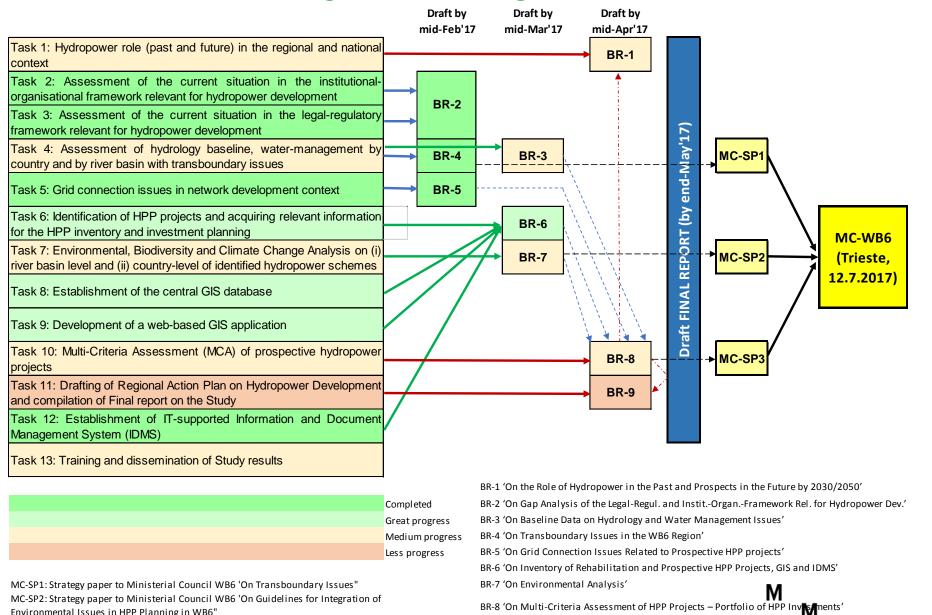
Terms of Reference (TOR)

Minor amendments


- Partial redefinition of the objective and purpose
 - "Contribute" to sustainable HPP development (objective)
 - Focus on (1st priority) repair, refurbishment, upgrade and rehabilitation of existing HPPs, and (2nd priority) sustainable greenfield HPPs
- Strengthen the importance of full transposition and (stepwise) implementation of EU Water Framework Directive (WFD) as policy platform for HPP planing, aiming at proposing HPP development projects consisting of:
 - Refurbishment projects aiming at improving operational safety, HPP capacity & availability and the environment at existing HPPs of more than 10MW of capacity in the WB6 region (55 facilities)
 - Refurbishment projects aiming at prolonging service life time of existing HPPs, where applicable, including possible improvements of the environment
 - 3. "Highly recommended" greenfield projects based on our Multi-Criteria Assessment (MCA) of new HPP candidates from a long-list of identified projects in the WB6 region (approx. 400).
- Amendment of task on dissemination of results:
 - 2 Workshops
 - Round-tour to all WB6-countries

Terms of Reference (TOR) What cannot be provided by the Study

- The Study shall not address the following issues and cannot provide the following results, for which <u>national institutions or public or private or</u> <u>mixed entities</u> are typically responsible in accordance with specific national legislation or regulations in place in the WB6 countries:
 - New Integrated River Basin Management Plan (IRBMP)
 - SEA at the river basin level or programme level, EIA or ESIA at the project level
 - New (pre)feasibility studies (including technical redesign existing HPP schemes)
 - Consideration of small HPPs at the individual power plant or tributary level no new cadastres of sHPPs
 - Quantitative assessment of cumulative effects of main rivers (in terms of water discharges, transport of sediments and fishery issue
 - National hydropower master-plan
 - "No-go" zones established
 - New comprehensive research / analysis of biodiversity and habitats ((25) River and (Sub)River Basins in the Study)
- The Study results are recommendations rather than any mandatory solutions for the WB6 countries.



Task & Deliverables Logistics and Progress

WBEC-REG-ENE-01

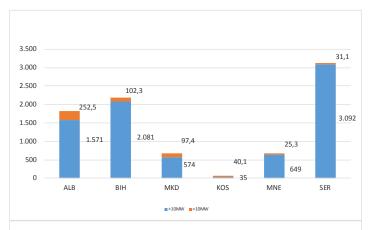
MACDONALD

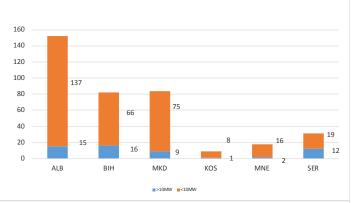
BR-9 'On Regional Action Plan on the Hydropower Development'

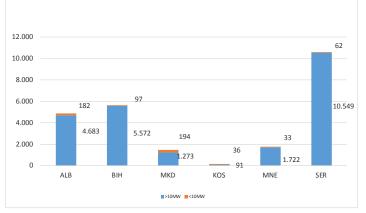
MC-SP3: Strategy paper to Ministerial Council WB6 'On Priority Investment Projects (rehabilitations and greenfield HPP projects)"

Environmental Issues in HPP Planning in WB6"

Progress and tangible results (from 1 October 2016 to end February 2017) by Task structured around (9) Background Reports (BR)

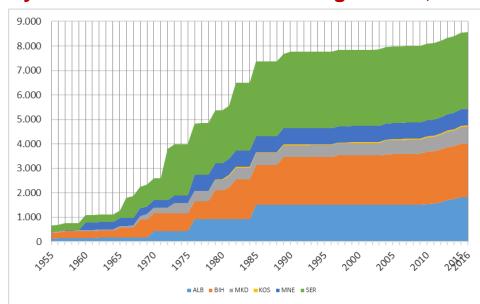



BR-1 Past and Future Role of HPPs in WB6


Existing HPPs (as of 31.12.2017)

	Nicon	show of bu	dua nasur	a wlawta (′ 0/\		
	Number of hydro power plants (-, %)						
		>10MW	(%)	<10MW	(%)	Total	(%)
	ALB	15	27,3	137	42,7	152	40,4
	BIH	16	29,1	66	20,6	82	21,8
3	MKD	9	16,4	75	23,4	84	22,3
	KOS	1	1,8	8	2,5	9	2,4
5	MNE	2	3,6	16	5,0	18	4,8
6	SER	12	21,8	19	5,9	31	8,2
	WB6	55	100,0	321	100,0	376	100,0
	Share	14,6	(%)	85,4	(%)	100	(%)
	Installed capacities in hydro power plants (MW, %)						
		>10MW	(%)	<10MW	(%)	Total	(%)
1	ALB	1.571	19,6	252	46,0	1.824	21,3
2	BIH	2.081	26,0	102	18,6	2.183	25,5
3	MKD	574	7,2	97	17,7	671	7,8
4	KOS	35	0,4	40	7,3	75	0,9
5	MNE	649	8,1	25	4,6	674	7,9
6	SER	3.092	38,6	31	5,7	3.123	36,5
	WB6	8.001	100,0	549	100,0	8.550	100,0
	Share	93,6	(%)	6,4	(%)	100	(%)
Electr	icity generat	ion in hyd	ro powe	r plants, 2	2001-201	5 (GWh, '	%)
		>10MW	(%)	<10MW	(%)	Total	(%)
1	ALB	4.683	58,5	182	33,2	4.865	19,9
2	BIH	5.572	69,6	97	17,6	5.669	23,1
3	MKD	1.273	15,9	194	35,4	1.468	6,0
4	KOS	91	1,1	36	6,5	127	0,5
	MNE	1.722	21,5	33	5,9	1.755	7,2
	SER	10.549	131,9	62	11,3	10.611	43,3
	WB6	23.891	298,6	603	110,0	24.495	100,0
	Share	97,5	(%)	2,5	(%)	100	(%)

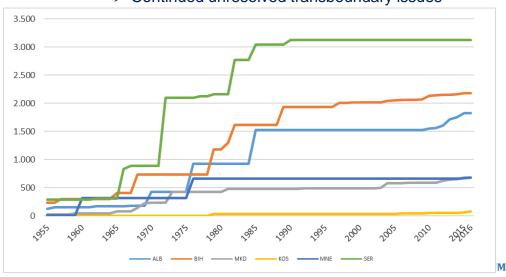
WBEC-REG-ENE-01



BR-1 Past and Future Role of HPPs in WB6

WBEC-REG-ENE-01

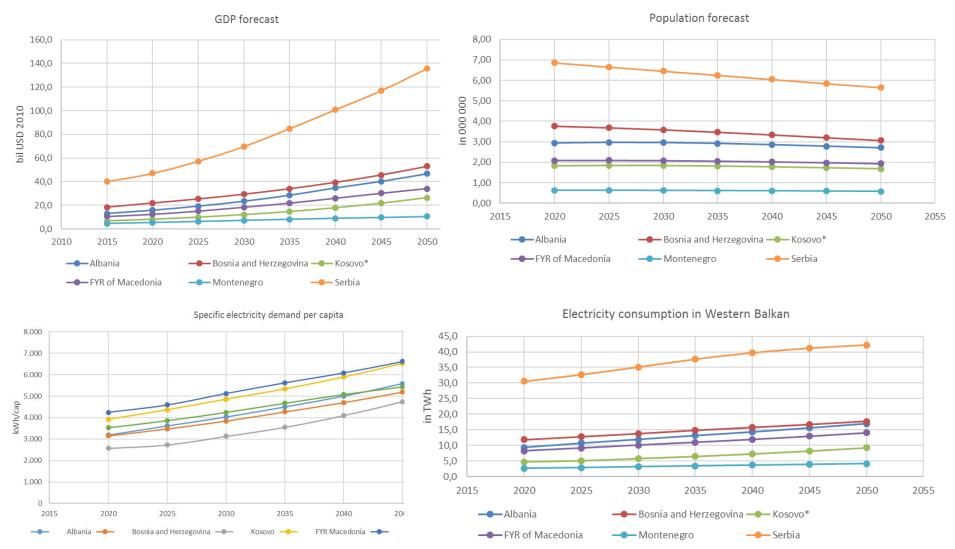
Dynamics of HPP commissioning in WB6, 1955-2015 (MW)



Period	MW	%	MW/a
Before 1955	667	7,8	
During 1955-1990	7.081	82,8	202,3
During 1991-2016	802	9,4	30,8
Total	8.550	100,0	

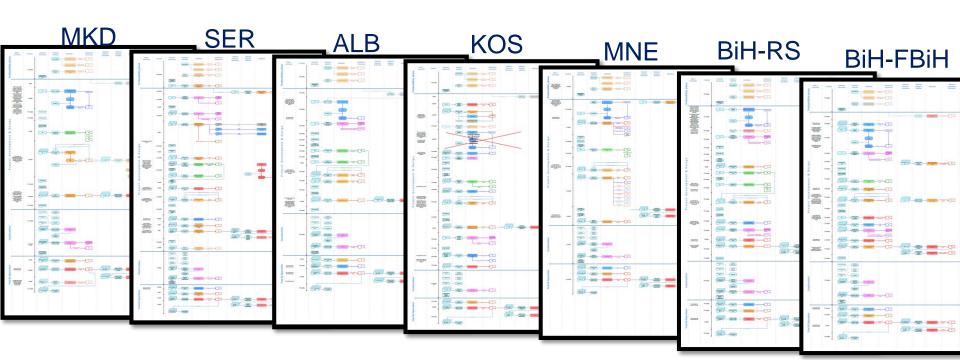
Average HPP-capacity addition achieved during 1955-1990 was **202 MW** per annum while in the period 1990-2015 it dropped to mere **31 MW** per annum.

Reasons can be attributed to:


- "Best" HPPs already implemented,
- Disintegration of former SFRJ followed by wars in the '90s,
- End of central planning and coordinated water management, lack of cooperation between newly established states.
- Lack of financial capacity of power utilities / states for investment intensive projects,
- Growing investment risks in emerging market conditions, and
- Continued unresolved transboundary issues

BR-1 Past and Future Role of HPPs in WB6

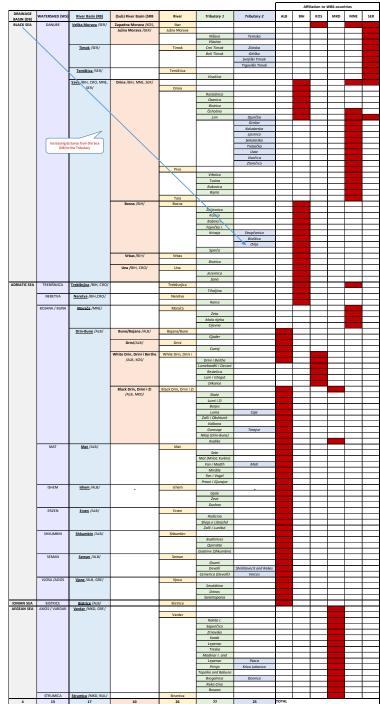
WBEC-REG-ENE-01


Electricity demand forecast in WB6 by 2050

BR-2 L&R and I&O Framework and Gap Analysis IOLR Diagrams for all 6 jurisdictions developed (+RS in BiH)

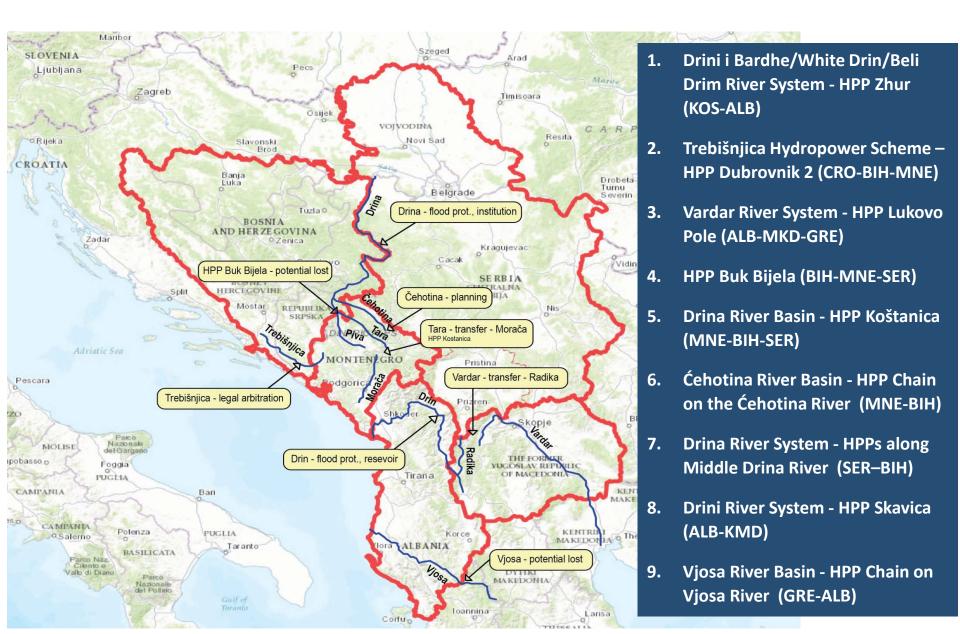
- Unified methodology applied
- Comparative analysis: aspects of location& construction permits, concession & water resources, grid connection, environmental permitting
- **Development process divided** into: prefeasibility, development & design, construction, trial & operation

BR-3 Baseline Hydrology and Water Management WBEC-REG-ENE-01

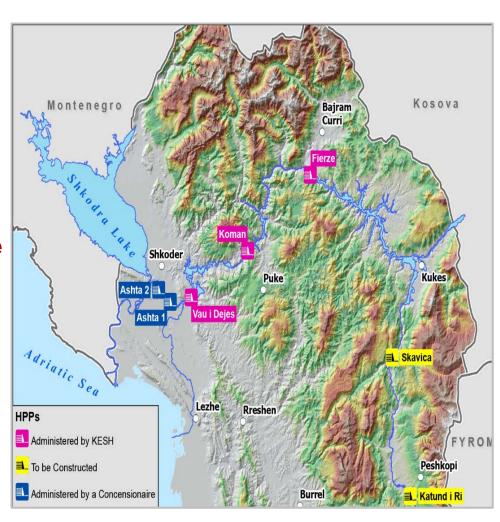

River Basin Classification applied in the Study

BR-3 Baseline Hydrology Classification of hydrographic elements:

- (4) drainage basins,
- (13) watersheds,
- (17) river basins,
- (10) (sub)river basins,
- (26) rivers,
- (77) tributaries 1, and
- (25) tributaries 2.

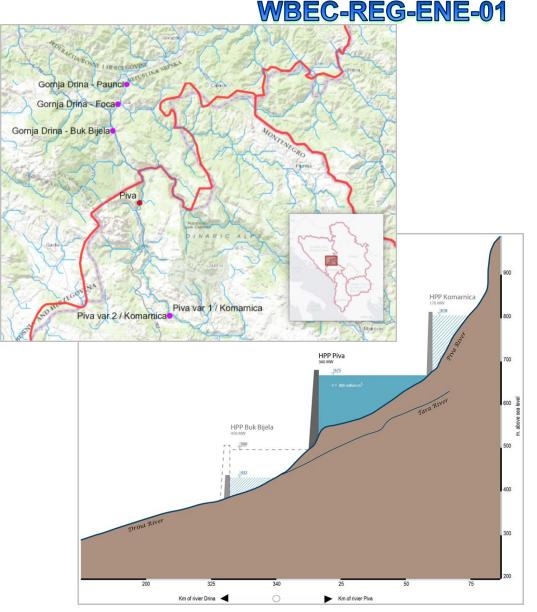

WBEC-REG-ENE-01

BR-4 Transboundary Issues


WBEC-REG-ENE-01

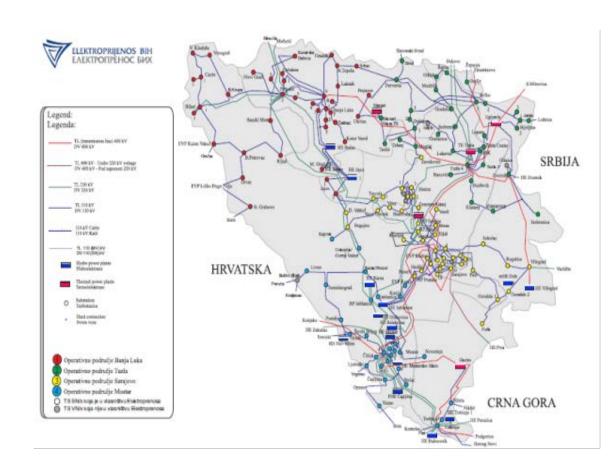
(9) Specific Transboundar Cases identified and analysed

BR-4 Transboundary Issues(2) Platforms


- Legal platform for resolving transboundary issues within Energy Community action, administered by the Energy Community Secretariat. European Commission shall join forces with the Energy Community Secretariat and make a compelling offer to the countries and territories involved.
- Transboundary issues in hydropower have two platforms, on the basis of which it resolving is possible.:
 - (1) under the above-proposed mediation of Energy Community,
 - (2) another platform is a legal act which provides regulation in a planning phase Water Framework Directive (WFD).

BR-4 Transboundary Issues Lessons learned

- Until present, transboundary issues in WB6 Region were predominately dealt with water quality aspects and to some extent biodiversity, while hydropower sector and power potential development remained behind any useful baseline.
- The greatest negligence is noticed in sharing hydropower potential, so transboundary cases remained where they were or at best went to worse by sizing down of best reservoir locations (like Buk Bijela or Skavica).

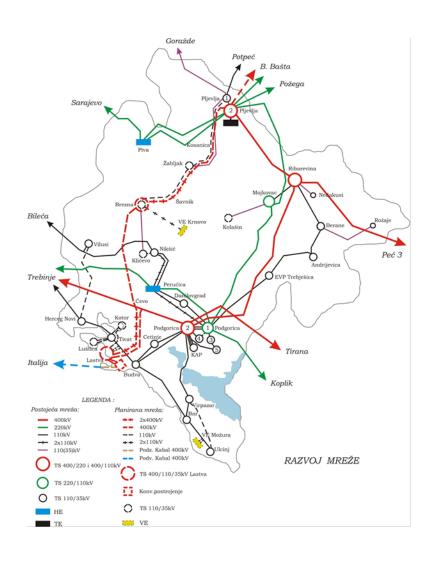


BR-5 Grid Connections Issues

WBEC-REG-ENE-01

Transmission Network

- Transmission network capacities and facilities will never be a constraint for HPP projects.
- All new HPP projects connected to the transmission network:
 - increase overall stability of the regional power system operations,
 - improve power system control capacities, and
 - increase
 opportunities for
 integration of other
 RES generation
 facilities, such as wind
 and solar generation.

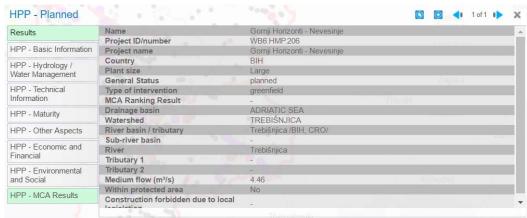


BR-5 Grid Connections Issues

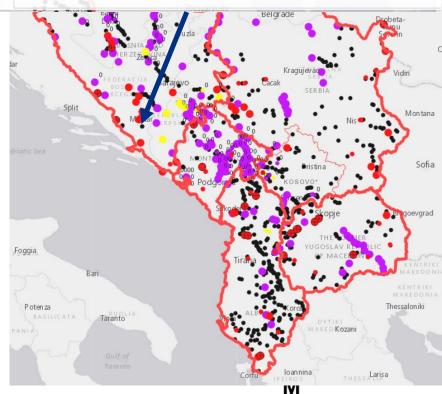
Distribution Network

- Capacity of the distribution networks in the region is <u>insufficient</u> to facilitate growing demand for connection of small HPPs
- Additional burden for already weak networks is from other RES and distributed generation facilities in general
- Distribution operators are in the unbundling process following opening of the retail market in the region
- Distribution networks require significant reinforcements in:
 - Network facilities
 - Control facilities,
 - Human resources
- Distribution Codes are getting improved, but still far away from transmission
- Certain differences across the region, but connection costs are almost by default paid by the Investor, including necessary network reinforcements

WBEC-REG-ENE-01



BR-6 Rehabilitation and Greenfield HPP Project,


GIS and IDMS

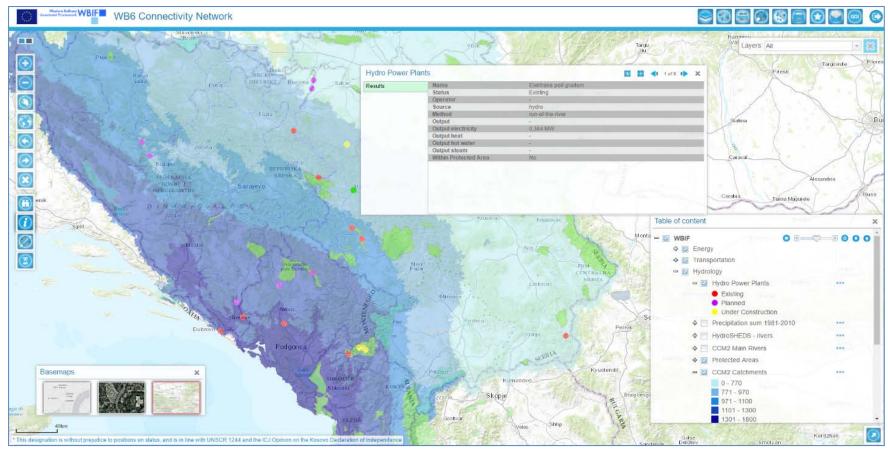
HPP-DB Preliminary Findings I

- Data collected on HPP projects over 10MW, on the following:
 - o general,
 - technical,
 - environmental & social,
 - hydrology & water management,
 - economic & financial,
 - maturity
- Total 480 projects over 10 MW identified. 154 eliminated due to: i) insufficient data, ii) alternative projects
- Total 326 projects selected for further analysis ("Screening"), of which in ALB (232), BIH (37) MNE (17), MKD (17), KOS (3) and SER (21)

WBEC-REG-ENE-01

IPF CONSORTIUM

This project is funded by the European Union

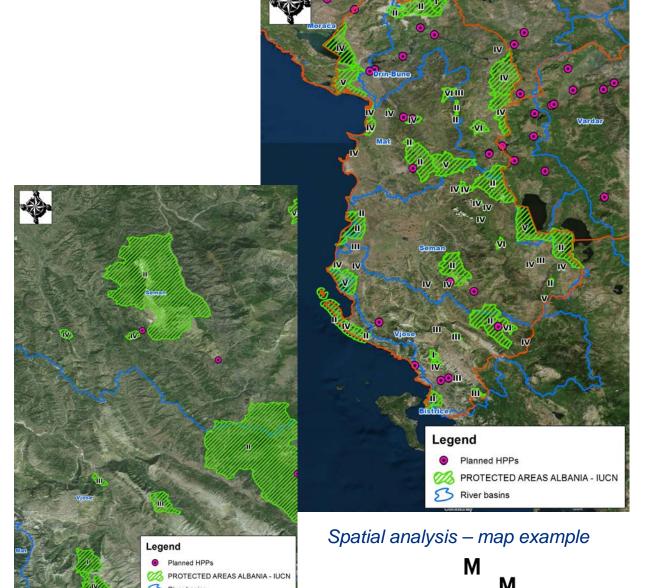

BR-6 Rehabilitation and Greenfield HPP Project, HDS-GIS and IDMS

WBEC-REG-ENE-01

MACDONALD

IPF CONSORTIUM

On HDS-GIS Database and Web GIS Application


Relevant HPP-related **central GIS database** is established and Hydropower Development Study GIS (HDS-GIS) application is developed, populated with data and operational. The **HDS-GIS application** includes maps / several layers that facilitate HPP projects planning and presentation.

BR-7 Environmental Analysis Conducted Activities

 Analysis of national SEA/EIA legal procedures / practices in WB6 countries,

Description of protected areas,

- Baseline description of important features of chosen (25) river basins,
- GIS data collected for environmental analysis: protected areas, Corine landcover, settlements, riverbasins,
- Fish fauna inventory and residual flow legislation analysis, GIS layers with species distribution.

WBEC-REG-ENE-01

IPF CONSORTIUM

BR-7 Environmental Analysis

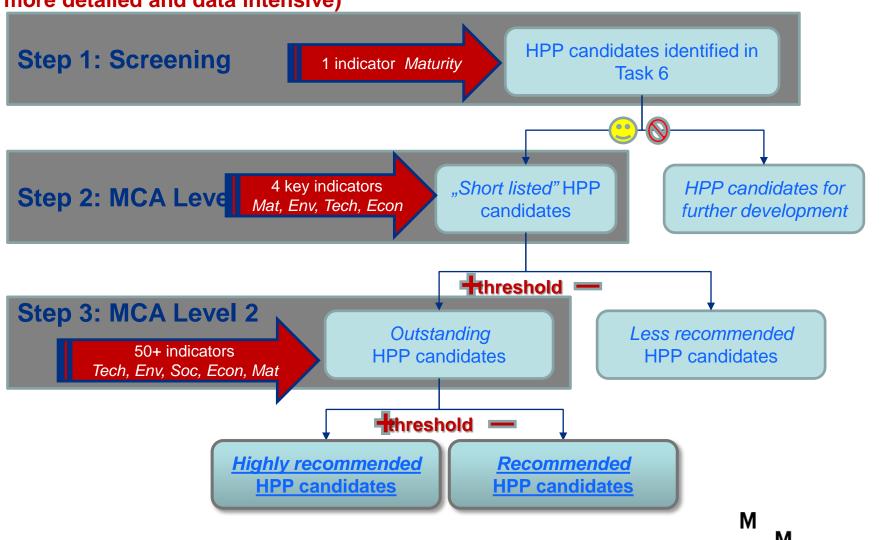
Ichthyologic analysis - 2

San Marino

WB6 Hydropower Development

Western Balkans WBIF Investment Framework

List of threatened species was prepared (41 species) – key species for the study:


by drainage basins (DB):
 Black Sea (10 species),
 Adriatic Sea (29 species),
 lonian Sea (2 species),
 Aegean Sea (6 species).
 Problem: WB6 region is
 ichthiologically insufficiently
 investigated.

IPF CONSORTIUM

BR-8 Multi-Criterial Assessment (MCA) of greenfield HPP projects

Outcome: HPP candidates ranked into groups

Assessment Approach and Methodology (3-step, each next step more detailed and data intensive)

Its characteristics:

- A concise document on max. 20 pages
- Summarizing main conclusions and recommendations from all BRs (i.e. BR-1 to BR-8)
- Providing concrete proposals for follow-up actions at both (i) horizontal - regonal (WB6) level as well as (ii) by individual WB6country
- To be prepared as the last BR in the Study (by end-April'17)

Last steps in the Study:

- Based on completed (9) BRs, draft Final Report wll be prepared (by end-May'17)
- Draft Final report will be presented to all (6) beneficiary countries during a tour to WB6-countries scheduled for 3 weeks (2 countries per week) during 12-30 June 2017
- Based on comments and feedback during the tour, Final Draft of the Final Report will be prepared by August 2017

WBIF-IPF 3 Consortium

Thank you for your attention!

www.wbif.eu