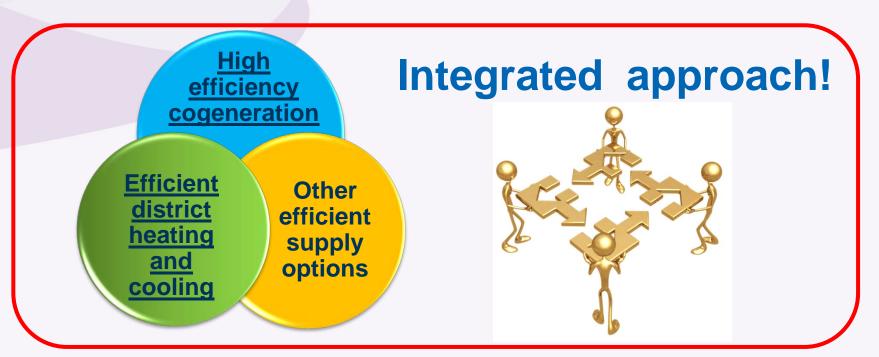


EED Art. 14 CHP, Heating and Cooling

Smart, efficient and sustainable heating and cooling systems

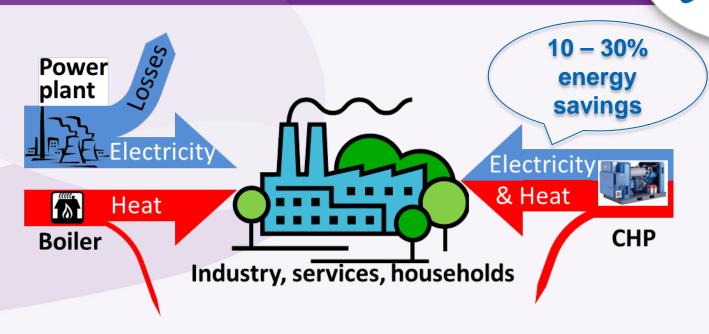
Stane Merse, Jozef Stefan Institute – Energy Efficiency Centre Ljubljana, Slovenia

CA-EED: CT7 leader - Efficiency in Energy Supply


12th ENERGY EFFICIENCY COORDINATION GROUP MEETING

Energy Community Secretariat, Vienna, 15 November 2016

EED – Art. 14: Efficiency in energy supply overall objective


The overall objective is to encourage the identification and delivery of cost effective potential for efficient heating and cooling through the use of:

Efficient heating & cooling: planning & utilization

High-efficiency cogeneration (CHP) definition

High-efficiency cogeneration (CHP) criteria

1. Annual overall efficiency > 75 %

(80% for combined cycle GT and condensing steam turbines)

If not fulfilled only part of electricity eligible:

$$E_{CHP} = H_{CHP} * C$$

2. Primary energy savings >10 (>0 micro CHP)

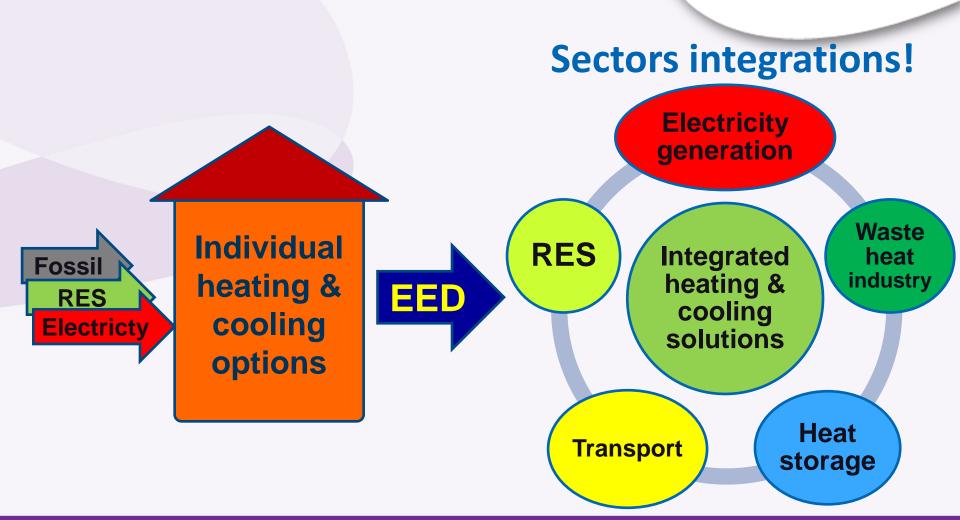
Harmonised efficiency reference values for separate production of electricity (EU) 2015/2402

Category		Type of fuel	Year of construction		
			Before 2012	2012- 2015	From 2016
Solids	S1	Hard coal including anthracite, bituminous coal, sub-bituminous coal, coke, semi-coke, pet coke	44,2	44,2	44,2
	S2	Lignite, lignite briquettes, shale oil	41,8	41,8	41,8
	S3	Peat, peat briquettes	39,0	39,0	39,0
	S4	Dry biomass including wood and other solid biomass including wood pellets and briquettes, dried woodchips, clean and dry waste wood, nut shells and olive and other stones	33,0	33,0	37,0
	\$5	Other solid biomass including all wood not included under S4 and black and brown liquor.	25,0	25,0	30,0
	S6	Municipal and industrial waste (non-renewable) and renewable/bio-degradable waste	25,0	25,0	25,0
Liquids	L7	Heavy fuel oil, gas/diesel oil, other oil products	44,2	44,2	44,2
	L8	Bio-liquids including bio-methanol, bioethanol, bio-butanol, biodiesel and other bio-liquids	44,2	44,2	44,2
	L9	Waste liquids including biodegradable and non-renewable waste (including tallow, fat and spent grain).	25,0	25,0	29,0
Gaseous	G10	Natural gas, LPG, LNG and biomethane	52,5	52,5	53,0
	G11	Refinery gases hydrogen and synthesis gas	44,2	44,2	44,2
	G12	Biogas produced from anaerobic digestion, landfill, and sewage treat-	42,0	42,0	42,0
	G13	Coke oven gas, blast furnace gas, mining gas, and other recovered gases (excluding refinery gas)	35,0	35,0	35,0
Other	014	Waste heat (including high temperature process exhaust gases, product from exothermic chemical reactions)			30,0
	015	Nuclear			33,0
	016	Solar thermal			30,0
	017	Geothermal			19,5
	018	Other fuels not mentioned above			30,0

Only Highefficiency CHP eligible for

- Support (State aid guidelines)
- Certificates of Origin

Efficient heating and cooling in EED


EED definitions:

- 'High efficiency CHP'
- <u>'Efficient District heating and cooling (DHC)</u> means a DHC system using at least:
- > 50 % renewable energy,
- 50 % waste heat,
- > 75 % cogenerated heat or
- > 50 % of a combination of such energy and heat
- <u>'Efficient heating and cooling'</u> measurably <u>reduces the</u> <u>input of primary energy</u> needed to supply one unit of delivered energy [...] <u>in a cost effective way</u>, taking into account the energy required for extraction, conversion, transport and distribution

PE savings + Cost effectiveness = EED

Do we need heat planning?

Comprehensive assessment (CA)

of the potential for the application of high efficient CHP and efficient district heating and cooling

I. Heating and cooling demand description

by sectors, 10 years forecast

III. Cost-Benefit Analysis (CBA):

- economic analysis covering socio-economic and environmental factors
- to identify the most cost-effective and beneficial heating or cooling option for a given geographical area (NPV criterion for the evaluation)

Economic potential: CHP & DHC

IV. Strategies, policy and measures

for development of identified cost beneficial potential

FOR A SUSTAINABLE FUTURE

Strategies policy and measures: 6 key topics (Annex VIII)

Increase the share of CHP in DHC & el. gen.

Developement of the DHC infrastructure

Location of the waste heat generation close to the demand

Location of the heat demand close to the waste heat sources

Waste heat and RES sources connection to the DHC network

Consumer connection to the DHC network.

Authorisation procedure >20MW_{ther.inp.} - CBA Installation

<u>Authorisation or equivalent permit criteria and procedures</u> based on cost benefit analysis – installation level (after 5 June 2014): for <u>planned or substantially refurbished installations</u> with total

thermal input > 20 MW:

> Thermal electricity generation:

CBA for CHP

Exempted: Nuclear PP, Peak load/Back-up power, CCS

> Industrial installation

CBA for CHP & connection on DHC network

- ➤ District heating and cooling network

 CBA for nearby industrial waste heat utilisation
- MS to adopt detailed guidance on the CBA to ensure consistent, robust and quick application of this requirement across sites (common assumptions on payback periods, required rates of return on investment, projected fuel and electricity prices, policy costs and support levels)

CBA – national & installation level

31.12.2015

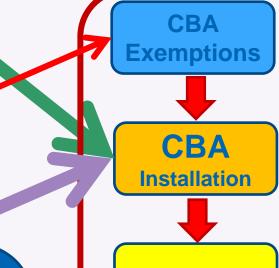
Regulation
Support
measures

Regulation *Authorisation*

5.6.2014

and cooling potential assessment (CA) of national heating Comprehensive

Policy


POTENTIAL CHP & DHC

CBA National

Mapping heat cool

Authorisation

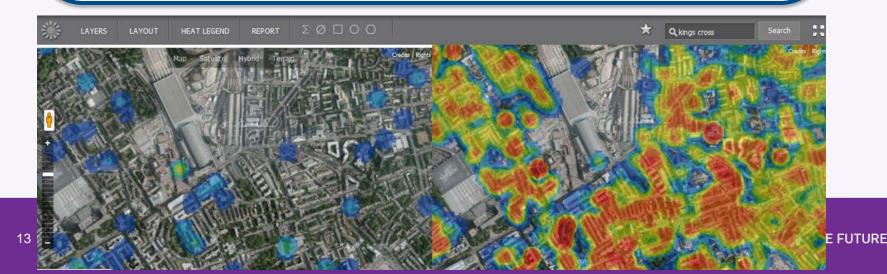
Installation permit **CBA** installation level **Authorisation**

District heating and cooling (DHC) linking technology

- Common goals & efforts, conflicts?
- Existing & new DHC?
- Regulation : competition?
- State aid
- Climate specific, tradition,...
- Lack of capacity, finance,...

DHC

EPBD


RESD

Heating & cooling mapping experiences

- Data challenge!!!
- Cooling new focus
- New powerful tool for planning?
 - Especially for MS with limited DHC experiences
 - Crucial on local/municipality level
 - Future updates?

New technologies, sources, approaches best practices

District Planning tools

Innovative new technologies & solutions:

- Technical data
- Real cases

Waste heat utilisation EU Strategy on Heating and Cooling

CONCERTED ACTION
ENERGY EFFICIENCY
DIRECTIVE

ENERGY EFFICIENCY FIRST!

"Usually it is more carbon neutral"

Energy

The heat being wasted in Europe could

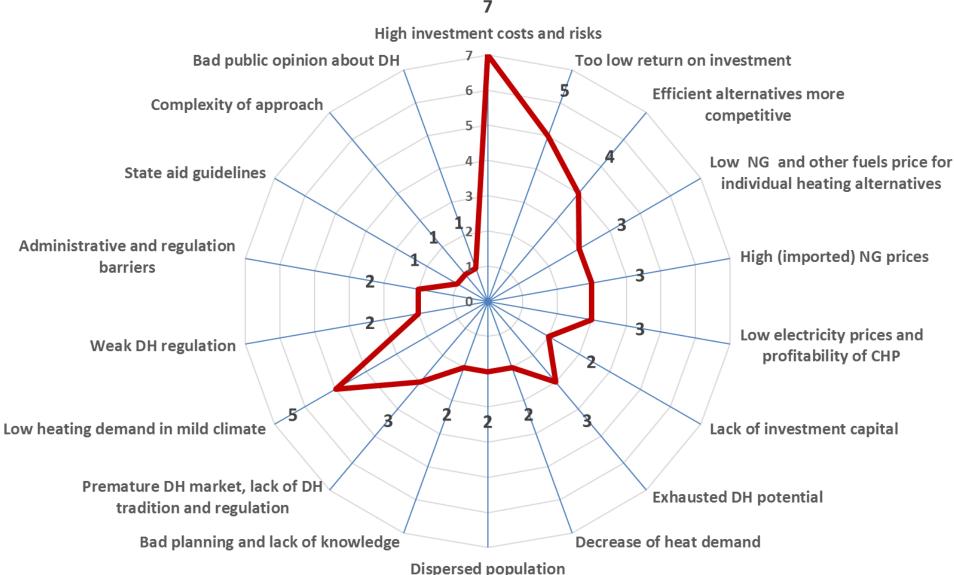
cover 100% of our buildings' heating needs.

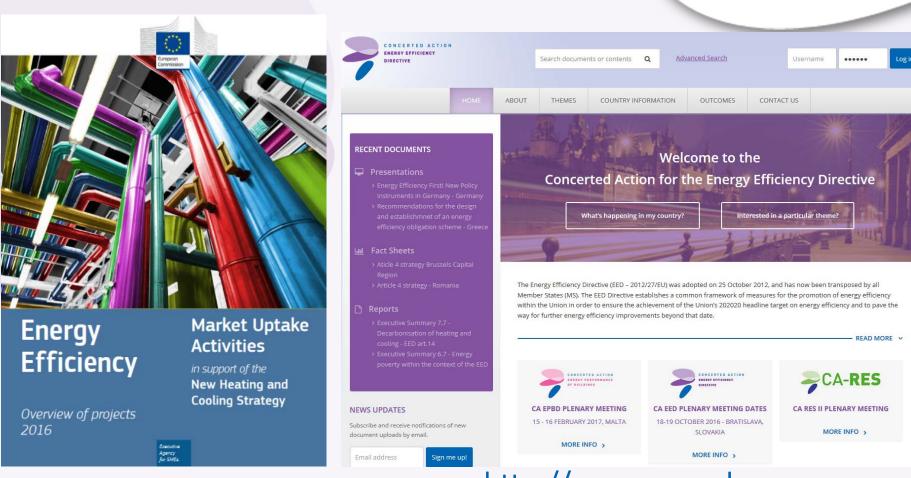
Let's take action!

@Energy4Europe

Comprehensive assessment (CA) lessons learned

CA = Start point – not end result!


- Brought more clarity to:
 - Current heating and cooling demand and
 - the future role of DHC and heat supply in MS
- Large potential assessed especially socioeconomic
- Limited policy and measures triggered
- Linking different energy and climate policy goals - directives
 - contribution to National Energy and Climate Plans


Main barrier for further developing of DH in EU

Sources of useful information

http://www.ca-eed.eu

Thank you for your attention!

Stane Merše, CT7 leader

Head of Energy Efficiency Centre JSI

Jamova 39 1000 Ljubljana Slovenia

Tel: +386 15885210

Fax: +386 15885377

Web: http://www.rcp.ijs.si/ceu/

Email: stane.merse@ijs.si

