

Study on 2030 overall targets

(energy efficiency, renewable energies, **GHG** emissions reduction)

for the Energy Community

Gustav Resch, Lukas Liebmann, Albert Hiesl, Andreas Türk*, László Szabó**, András Mezősi**

TU Wien, Energy Economics Group

Email: liebmann@eeg.tuwien.ac.at

Web: http://eeg.tuwien.ac.at

* Joanneum Research, Austria

** Regional Centre for Energy Policy Research (REKK), Hungary

- Selection of the base year, consideration of GDP
- The possible split between the ETS and non-ETS sectors (methodology, feasibility, in particular regarding the absence of an ETS)
- Potential national pathways to be followed, flexibilities
- The list of potential gases (e.g. regarding data availability)
- Consistency between RE, EE, and GHG targets
- Convergence to EU carbon intensities
- Consistency with other ENC legislation in particular the Large combustion plant directive

GHG target setting for the CPs

- Completely analogous method to EU not applicable
 - no ETS in the CPs
 - high ambition level
 - effort sharing of an overall target part of a common economic area
- Current target setting (e.g. INDCs) often disconnected from the EU approach
- Which elements of EU target setting can we apply?

9 October 2018

Methodological approach for the CPs

Ideally split EU-ETS and non ETS sectors

- For the non-ETS sectors application of out method (GDP related target)
- For the ETS sectors
 - national projections
 - Modelling results from Green-X and EEMM
 - Consider reduction of Carbon intensity
- ✓ Montenegro's INDC a good practice example: It explicitly took convergence with EU-ETS benchmarks into account

GPD- related non-ETS targets

15. Februar 2017 5

National GHG projections

- GHG projections for industry missing in most CPs
 - Reduction of carbon intensity important feature to make them ETS ready -> convergence to ETS benchmarks
- A few CPs have a large land-use GHG reduction potential, but data and projections have to many uncertainties
- Cost effective renewable energy potentials, particularly PV often underestimated, but movement in some CPs

Albania tenders 50 MW of solar

Through the auction, the authorities in Tirana aim to build a solar park in the Akërni salt flats, near Vlorë.

AUGUST 6, 2018 EMILIANO BELLINI

Montenegro announces 200 MW solar tender

As a first step towards executing a 200 MW solar tender, the Montenegrin government has planned a public invitation to lease land owned by the state at the Briska Gora – Ulcinj Municipality, where the array is planned.

9 October 2018

No downward trend in Carbon intensity in industry

- A few CPs saw a gas-to-coal switch in industry (e.g. Serbia, Ukraine, BIH)
- EU Carbon price are rising

Draft targets for the CPs

	2030 emissions target [Mt CO _{2 eq}]	Total % compared to 2005	Total % compared to 2014 (2013)	INDC
Montenegro	3,4	-21	4,9 (2013)	3.49
Serbia	61,07	-2	13,7	75.07
FYROM	14,10	12.98	14,7	18.34
BIH	18,85	14.50	-27	40.17
Albania	7,880	11.4		n.a.
Kosovo*	11,4	20.00	19	n.a.
Moldova	15,39	20.00	16	15.63
Georgia	14,53	20.00	14,3	23.21
Ukraine	518	20.00	38	557.94

- ➤ WB6 aggregated target of 116 Mt on 2030 means a stabilisation of GHG emission at 2005 levels
- ➤ New lignite fired power plant Stanari in Bosnia and Herzegovina officially started commercial operations in September 2016

Reduction achieved by meeting the RES and EE targets

- RES and EE targets will achieve GHG reductions in electricity heating, transport, energy consumption in industry
 - For WB6 2030 RES and EE are rather consistent with GHG targets
 - For Moldova and Ukraine RES and EE targets would lead to more stringent GHG targets

Final assessment after agreement on RES and EE targets

9 October 2018

Coal/lignite based Bosnia and Herzegovina and Serbia

- National GHG projections include maintenance of coal/lignite based energy systems (despite strong planned RES increase in Serbia)
- In BIH national GHG projections widely differ depending on the extension of TPPs
- Fulfillment of Large Combustion Plant Directive and IED need to be considered in scenarios

Large Combustion Plant and IEM directives

Impact GHG profiles in 2030

- LCPD became obligatory from 31 March 2018.
 - Opt-out plant to be closed in 2023
- Any option is to be considered by taking into consideration that plants should comply with (more stringent) IED directive from 2028
- Meeting the emission standards by retrofitting may increase GHG emissions
- ➤ By increasing investment costs of construction of new fossil fuel fired thermal power plants or retrofitting old ones, emission standards put a price tag on coal, oil and gas.

Bosnia and Herzegovina

 Third National Communication 2016: Significant coal phase-out by 2030

Chart 42: CO, emissions from the power sector in BiH according to the scenarios

- IPRP 2019-2028: 1300 MW net new fossil capacity by 2030
- Achievement of 2030 RES and EE target as additional criterium to determine needed fossil capacity extensions-supports the lower emission scenarios

Impact assessment (1): GHG

Electricity	AL	BiH	КО	MD	ME	MK	RS	GE	UA	Total
Biomass	4	15	17	2	0	75	295	4	66	478 ± 10%
Hydro large-scale	937	7,426	0	0	541	2,521	0	977	7,172	19,575 ± 17%
Hydro small-scale	851	444	72	0	130	319	0	505	736	3,057 ± 17%
Photovoltaics	522	33	805	9	47	705	2,085	782	7,865	12,853 ± 22%
Solar thermal electricity	0	0	0	0	0	0	0	0	0	0 ± 48%
Wind onshore	279	244	534	66	57	746	7,430	802	9,419	19,577 ± 15%
Total	2,592	8,163	1,428	77	775	4,366	9,810	3,070	25,259	55,539 ± 17%
Heat	AL	BiH	КО	MD	ME	MK	RS	GE	UA	Total
Solid biomass (grid)	5	12	9	360	4	23	69	14	112	608 ± 11%
Solid biomass (non-grid)	1,363	7,207	1,289	1,763	919	1,483	4,834	1,524	16,574	36,955 ± 11%
Solar thermal heating and hot water	1,126	262	446	51	45	168	682	1,255	10,995	15,031 ± 48%
Total	2,494	7,481	1,744	2,175	968	1,674	5,585	2,793	27,680	52,595 ± 22%
Biofuels	AL	BiH	КО	MD	ME	MK	RS	GE	UA	Total
Total	360	348	228	269	153	353	1,391	938	12,100	16,140 ± 49%
Grand total	5,447	15,991	3,400	2,521	1,896	6,393	16,786	6,801	65,039	124,273 ± 23%

Impact assessment (2): Net job effects

- ❖ But: 16% of jobs created due to renewable energy expansion were lost in the fossil energy sector in AT, BE, CZ, FR, GER, IT NL, ES* (<u>In countries with a high share of coal-powered generation these</u> <u>numbers could be higher.</u>
- However, increasing renewables and decentralized renewables energy solutions may create jobs beyond the installation and maintenance of new technologies. This includes for example new jobs in
 - the IT sector for, e.g., managing PV variability and volatility, new communication technologies
 - In consultancies or financing institutions
 - New market actors that are emerging e.g. aggregators

^{*} State of Renewable Energies in Europe (2017)

Impact assessment GHG (3): GDP effects

Country	SEERMAP (2050) Decarbonisation Scenario				
	RES-E				
AL	2.6%				
BIH	3.9%				
KO*	2.0%				
ME	6.6%				
MK	2.0%				
RS	0.7%				

Table 1: GDP effects 2050

We based our results on the SEERMAP project. The same electricity market model EEMM is applied in both the SEERMAP and the EnC Target setting assessment-

Options for improving the GHG target setting

- We aim to precisely split ETS and non-ETS but <u>CPs have</u> to assist with data
- Ukraine: electricity projections
- Industry: Reduction of carbon intensity important feature to make them ETS ready-> do CPs have suitable projections?

Otherwise we could propose trends

Outline for EEMM modeling results

- What is in the focus of the assessment?
- What model is used in the assessment?
- Results by country

- If the RES and Energy efficiency targets are fulfilled in the EnC countries, what level of effort is needed to achieve the GHG targets?
- And what are the impacts on the electricity sector?
- Boundaries:
 - -Focus only on electricity sector serious assumptions on the targets (e.g. similar level of GHG reduction as in the overall energy sector which needs refinement in the future)

Data sources, assumptions:

- Latest EnC country strategies, other planning documents
- Demand assumptions based on National documents, SEERMAP (2017) and PECI III (2018) assessments
- No carbon pricing regime in the reference in the EnC countries till 2030
- Follow the three scenarios as in case of the RES modelling (Reference, national, cooperation)

- ► Partial equilibrium model in which homogeneous product is traded across neighboring markets
- ► Competitive behaviour in production and trade
- ► Constrained capacity limits on cross border networks, power flows on an interconnector are limited by NTC.

- ▶40 countries (ENTSO-E + neighbours)
- ► Around 3400 power plant blocks
- ▶ 104 interconnectors between countries

New fossil plants in the region

Country	Unit name	Installed capacity [MW]	(Expected) year of commissioning	Expected year of decommissioning	Fuel type
AL	New gas-fired power plant	200	2023	2078	natural gas
ВА	Tuzla 7	450	2019	2074	lignite
BA	Kakanj 8	300	2023	2078	lignite
BA	Banovići	350	2020	2075	lignite
BA	Stanari	300	2016	2070	lignite
BA	Ugljevik 3	600	2018	2073	lignite
KO*	Kosova e Re Power	500	2023	2063	lignite
ME	TPP Plevlja 2	225	2023	2075	lignite
RS	CHP Pancevo	140	2016	2051	natural gas
RS	CHP Pancevo	338	2021	2051	natural gas
RS	Kolubara B	350	2025	2076	lignite

Study on 2030 overall targets

Results – electricity mix and RE shares*

Study on 2030 overall targets

Results – aggregated CO₂ emissions from power sector*

Study on 2030 overall targets

Results – CO2 emissions (electricity sectors) and assumptions made for targets by country*

Study on 2030 overall targets

*Example of Serbia

Climate targets for the power sector:

- Kosovo* and Moldova is projected to be well under their targets,
- Montenegro is very close, slightly under its calculated target
- The rest of the EnC countries need to make significant effort to reduce their emissions
- Bosnia and Herzegovina presents the highest distance from its target, but there is high uncertainty on its lignite plants.
- One single investment in a lignite plant in a country can have significant impact on the target which brings high uncertainty to the estimates.
- Note that RES and EE efforts are already included in the scenario, so even a country which is at the GHG target has to make significant effort through RES and EE policies!

Thanks for your attention!

László Szabó

Contact details:

laszlo.szabo@rekk.hu

András Mezősi

Contact details: andras.mezosi@rekk.hu

ANNEX

Capacity development

REF COP NAT —Target

CO2 emissions and targets

Bosnia and Herzegovina

Study on 2030 overall targets

Capacity development

ECS – Vienna, 9 October 2018 GHG target setting ... Slide 30

CO2 emissions and targets, at lower lignite development path*

^{*}Banovići, Kakanj 8, Tuzla 7 and Ugljevik 3 are not built.

Study on 2030 overall targets

Capacity development

CO₂ emissions and targets

ECS – Vienna, 9 October 2018 GHG target setting ... Slide 32

Macedonia

Study on 2030 overall targets

Capacity development

Study on 2030 overall targets

Montenegro

Study on 2030 overall targets

Capacity development

Capacity development

Ukraine

Study on 2030 overall targets

CO₂ emissions and targets

Capacity development

