

Exercise 1

Fill the amounts in the appropriate cells of the JODI Extended Questionnaire:
2.248 kilo tonnes (kt) of crude oil production

450kt of crude oil imports
Closing stocks of crude oil on national territory stood at 1.260kt
Opening stocks of crude on national territory oil stood at 1.227 kt
The inputs of biofuels from non-oil sources (renewables) amounted to 26kt
The crude oil refinery intake 2.665 kt
The other oil product refinery intake 26 kt

Exercise 1

2.248 kilo tonnes (kt) of crude oil production

450kt of crude oil imports
Closing stocks of crude oil on national territory stood at 1.260kt Opening stocks of crude on national territory oil stood at 1.227 kt The inputs of biofuels from non-oil sources (renewables) amounted to 26kt
The crude oil refinery intake 2.665 kt The other oil product refinery intake 26 kt

Stock change is calculated as the closing stock level minus the opening stock level.

Opening stock level is the amount of primary stocks on national territory, measured on the first day of the month being reported (e.g. 1st June).

Closing stock is the amount of primary stocks on national territory measured on the last day of the month being reported (e.g. 30th June). Stock changes is closing - opening stock level: therefore, a stock build is shown as a positive number, and a stock draw as a negative number.

Solution Exercise 1

2.248 kilo tonnes (kt) of crude oil production

450kt of crude oil imports
Closing stocks of crude oil on national territory stood at 1.260kt Opening stocks of crude on national territory oil stood at 1.227 kt The inputs of biofuels from non-oil sources (renewables) amounted to 26kt
The crude oil refinery intake 2.665 kt The other oil product refinery intake 26 kt

Exercise 2

Fill the amounts in the appropriate cells of the JODI Extended Questionnaire:
In February 2014 the following figures for Refinery Gross Output by product were observed in your country:
LPG:199kt
Naphtha: 356kt
Gasoline: 576kt
Kerosene (Type Jet Fuel): 391kt
Gas/Diesel Oil: 524kt
Fuel oil: 633kt
Refinery Gas: 5kt
Ethane: 4kt
Import of 100kt of other Kerosene
Export of 91 kt of jet kerosene

Please, fill in the amounts of observed demand for the following products:

LPG: 200kt
Naphtha: 350kt
Gasoline: 576kt
Total Kerosene: 400kt
Kerosene (Type Jet Fuel): 300kt

Exercise 2

LPG：199kt
Naphtha：356kt
Gasoline：576kt
Kerosene（Type Jet Fuel）：391kt Gas／Diesel Oil：524kt

Fuel oil：633kt
Refinery Gas：5kt
Ethane：4kt
Import of 100kt of other Kerosene
Export of 91kt of jet kerosene

Observed Demand：

LPG：200kt
Naphtha：350kt
Gasoline：576kt
Total Kerosene：400kt

Kerosene（Type Jet Fuel）：300kt Gas／Diesel Oil：524kt
Fuel oil：633kt
Other Products：9kt

						Petroleum Products								
	Crude Oil	NGL	Other	$\begin{gathered} \text { Total } \\ (1)+(2)+(3) \end{gathered}$		LPG	Naphtha	Gasoline	Total Kerosene	Of which： Jet Kerosene	Gas／ Diesel Oil	Fuel Oil	Other Products	$\begin{gathered} \text { Total Products } \\ (5)+(6)+(7) \\ +(8)+(10)+(11) \\ +(12) \end{gathered}$
	（1）	（2）	（3）	（4）		（5）	（6）	（7）	（8）	（9）	（10）	（11）	（12）	（13）
＋Production	0	0	0	0	＋Refinery Output	0	0	0	0	0	0	0	0	
＋From Other sources	888888	8888	0	0	＋Receipts	0	0	0	0	0	0	0	0	
＋Imports	0	0	0	0	＋Imports	0	0	0	0	0	0	0	0	
－Exports	0	0	0	0	－Exports	0	0	0	0	0	0	0	0	
＋Products Transferred ／Backflows			0	0	－Products Transferred	0	0	0	0	0	0	0	0	
－Direct Use	0	0	0	0	＋Interproduct Transfers	0	0	0	0	0	0	0	0	
－Stock Change	0	0	0	0	－Stock Change	0	0	0	0	0	0	0	0	
－Statistical Difference	ヤ！ 0	¢ 0	¢！ 0	ヤ！\quad ！	－Statistical Difference	¢	¢！	¢！	पبை 0	ヤ！	¢！ 0	¢ 0	ヤ！$\quad 1$	
＝Refinery Intake	0	0	0	0	＝Demand	0	0	0	0	0	0	0	0	
Closing stocks	0	0	0	0	Closing stocks	0	0	0	0	0	0	0	0	

Solution Exercise 2

LPG：199kt
Naphtha：356kt
Gasoline：576kt
Kerosene（Type Jet Fuel）：391kt
Gas／Diesel Oil：524kt

Fuel oil：633kt
Refinery Gas：5kt
Ethane：4kt
Import of 100kt of other Kerosene
Export of 91kt of jet kerosene

Observed Demand：

LPG：200kt
Naphtha：350kt
Gasoline：576kt
Total Kerosene：400kt

Kerosene（Type Jet Fuel）：300kt
Gas／Diesel Oil：524kt
Fuel oil：633kt
Other Products：9kt

Total Kerosene＝Jet kerosene＋Other Kerosene
Refinery Gas＋Ethane＝5＋4

						Petroleum Products								
	Crude Oil	NGL	Other	$\begin{gathered} \text { Total } \\ (1)+(2)+(3) \end{gathered}$		LPG	Naphtha	Gasoline	Total Kerosene	Of which： Jet Kerosene	Gas／ Diesel Oil	Fuel Oil	Other Products	$\begin{gathered} \text { Total Products } \\ (5)+(6)+(7) \\ +(8)+(10)+(11) \\ +(12) \end{gathered}$
	（1）	（2）	（3）	（4）		（5）	（6）	（7）	（8）	（9）	（10）	（11）	（12）	（13）
＋Production			0	0	＋Refinery Output	199	356	576	391	391	524	633	9	2688
＋From Other sources			0	0	＋Receipts	0	0	0	0	0	0	0	0	0
＋Imports			0	0	＋Imports	0	0	0	100	0	0	0	0	100
－Exports			0	0	－Exports	0	0	0	91	91	0	0	0	91
$+\begin{aligned} & \text { Products Transferred } \\ & \text {／Backflows }\end{aligned}$			0	0	－Products Transferred	0	0	0	0	0	0	0	0	0
－Direct Use	0	0	0	0	＋Interproduct Transfers	0	0	0	0	0	0	0	0	0
－Stock Change	0	0	0	0	－Stock Change	0	0	0	0	0	0	0	0	0
－Statistical Difference	19	ฺை !	\Leftrightarrow	ヤேை女ை	－Statistical Difference	!ை!	ヤ！ 6	¢！ 0	¢	ヤ！	¢！ 0	＋！ 0	T!	ヤ \quad ！$\quad 1$
＝Refinery Intake	0	0	0	0	＝Demand	200	350	576	400	300	524	633	9	2692
Closing stocks	0	0	0	0	Closing stocks	0	0	0	0	0	0	0	0	0

Exercise 3

Fill the amounts in the appropriate cells of the JODI Extended Questionnaire:

During October 2016, $800 \mathrm{~kb} / \mathrm{d}$ of NGL have been produced; $600 \mathrm{~kb} / \mathrm{d}$ served as input to the refinery, while the remaining quantity was consumed internally as LPG.

Exercise 3

During October 2016, $800 \mathrm{~kb} / \mathrm{d}$ of NGL have been produced; $600 \mathrm{~kb} / \mathrm{d}$ served as input to the refinery, while the remaining quantity was consumed internally as LPG.

						Petroleum Products								
	Crude Oil	NGL	Other	Total $(1)+(2)+(3)$		LPG	Naphtha	Gasoline	Total Kerosene	Of which: Jet Kerosene	Gas/ Diesel Oil	Fuel Oil	Other Products	$\left\lvert\, \begin{gathered} \text { Total Products } \\ (5)+(6)+(7) \\ +(8)+(10)+(11) \\ +(12) \end{gathered}\right.$
	(1)	(2)	(3)	(4)		(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
+ Production	0 0 8888888		0	0	+ Refinery Output	0	0	0	0	0	0	0	0	0
+ From Other sources			0	0	+ Receipts	0	0	0	0	0	0	0	0	0
+ Imports	0	0	0	0	+ Imports	0	0	0	0	0	0	0	0	0
- Exports			0	0	- Exports	0	0	0	0	0	0	0	0	0
$\begin{array}{\|l} + \text { Products Transferred } \\ \text { /Backflows } \\ \hline \end{array}$			0	0	- Products Transferred	0	0	0	0	0	0	0	0	0
- Direct Use	0	0	0	0	+ Interproduct Transfers	0	0	0	0	0	0	0	0	0
- Stock Change	0	0	0	0	-Stock Change		0	0	0	0	0	0	0	\square
- Statistical Difference	+ \quad !			Tேட女	- Statistical Difference				$0 \text { - }$	T		$9 \text { पبை } 0$	ヤ!	بـ \quad ! $\quad 0$
= Refinery Intake	0	0	0	0	= Demand	0	0	0	0	0	0	0	0	0
Closing stocks	0	0	0	0	Closing stocks	0	0	0	0	0	0	0	0	0

Direct use

> Crude oil, NGL and other hydrocarbons which are used directly without being processed in oil refineries (e.g.: crude oil burned for electricity generation).
> Amount reported as direct use (crude, NGL \&other hydrocarbons) should also be reported to receipts of other products.
> Direct use would be counted under 'demand'

Solution Exercise 3

During October 2016, $800 \mathrm{~kb} / \mathrm{d}$ of NGL have been produced; $600 \mathrm{~kb} / \mathrm{d}$ served as input to the refinery, while the remaining quantity was consumed internally as LPG.

						Petroleum Products								
	Crude Oil	NGL	Other	$\begin{gathered} \text { Total } \\ (1)+(2)+(3) \end{gathered}$		LPG	Naphtha	Gasoline	Total Kerosene	$\begin{aligned} & \text { Of which: } \\ & \text { Jet } \\ & \text { Kerosene } \end{aligned}$	$\begin{gathered} \text { Gas/ } \\ \text { Diesel Oil } \end{gathered}$	Fuel Oil	Other Products	$\begin{gathered} \text { Total Products } \\ (5)+(6)+(7) \\ +(8)+(10)+(11) \\ +(12) \end{gathered}$
	(1)	(2)	(3)	(4)		(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
+ Production		800	0	800	+ Refinery Output	0	0	0	0	0	0	0	0	0
+ From Other sources	< \times ¢	¢ \times ¢ \times ¢	0	0	+ Receipts	0	0	0	0	0	0		$\longrightarrow 200$	200
+ Imports	0	0	0	0	+ Imports	0	0	0	0	0	0	0	10	0
- Exports			0	0	-Exports	0	0	-	0	0	0	0	0	
+ Products Transferred /Backflows	ㅇ x	888×8	0	0	-Products Transferred	0	0	0	0		0	0	0	
- Direct Use	0	200	- 0	200	+ Interproduct Transfers	200	$\longleftarrow \quad 0$	0	0	0	0	0	$\checkmark-200$	0
-Stock Change	0	0	0	0	-Stock Change	0	0	0	0	0	0	0	0	
-Statistical Difference	, \% , 积,	, \% , \% 8	, , , \%	, , , ,	-Statistical Difference	θ	, \%	, \%	0	, ,	, , , \% 0	, , , 0	\%,	
= Refinery Intake	0	600	0	600	= Demand	200	0	0	0	0	0	0	0	200
Closing stocks	0	0	0	0	Closing stocks	0	0	0	0	0	0	0	0	

Exercise 4

Fill the amounts in the appropriate cells of the JODI Extended Questionnaire:

During April 2016, 15 kb/d of imported crude and10 kb/d of diesel have been directly burned for electricity generation.

Exercise 4

During April 2016, $15 \mathrm{~kb} / \mathrm{d}$ of imported crude and10 kb/d of diesel have been directly burned for electricity generation.

						Petroleum Products								
	Crude Oil	NGL	Other	$\left\lvert\, \begin{gathered} \text { Total } \\ (1)+(2)+(3) \end{gathered}\right.$		LPG	Naphtha	Gasoline	Total Kerosene	Of which: Jet Kerosene	Gas/ Diesel Oil	Fuel Oil	Other Products	$\begin{gathered} \text { Total Products } \\ (5)+(6)+(7) \\ +(8)+(10)+(11) \\ +(12) \end{gathered}$
	(1)	(2)	(3)	(4)		(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
+ Production		0	0	0	+ Refinery Output	0	0	0	0	0	0	0	0	0
+ From Other sources	888	88	0	0	+ Receipts	0	0	0	0	0	0	0	0	0
+ Imports	0	0	0	0	+ Imports	0	0	0	0	0	0	0	0	0
- Exports	0	0	0	0	- Exports	0	0	0	0	0	0	0	0	0
$+\begin{aligned} & \text { Products Transferred } \\ & \text { /Backflows }\end{aligned}$			0	0	- Products Transferred	0	0	0	0	0	0	0	0	0
- Direct Use	0		0	0	+ Interproduct Transfers	0	0	0	0	0	0	0	0	0
- Stock Change	0	0	0	0	-Stock Change	0	0	0	0	0	0	0	0	0
- Statistical Difference	9	\leqslant	0	0	-Statistical Difference	+! 0	-	-	¢ $\quad 1$	¢ 0	+ \quad ¢	+	¢ $\quad 0$	بை \quad ¢
= Refinery Intake	0	0	0	0	= Demand	0	0	0	0	0	0	0	0	0
Closing stocks	0	0	0	0	Closing stocks	0	0	0	0	0	0	0	0	0

Solution Exercise 4

During April 2016, $15 \mathrm{~kb} / \mathrm{d}$ of imported crude and10 kb/d of diesel have been directly burned for electricity generation.

Exercise 5

Fill the amounts in the appropriate cells of the JODI Extended Questionnaire:
During January 2016, the refinery produced $250 \mathrm{~kb} / \mathrm{d}$ of kerosene and $300 \mathrm{~kb} / \mathrm{d}$ of naphtha. $150 \mathrm{~kb} / \mathrm{d}$ of kerosene was consumed internally while the remaining quantity was reclassified as gasoil after being blended with the latter in order to meet its winter diesel specification. $100 \mathrm{~kb} / \mathrm{d}$ of naphtha was used for upgrading and $200 \mathrm{~kb} / \mathrm{d}$ was reformed to gasoline.

Exercise 5

During January 2016，the refinery produced $250 \mathrm{~kb} / \mathrm{d}$ of kerosene and $300 \mathrm{~kb} / \mathrm{d}$ of naphtha． $150 \mathrm{~kb} / \mathrm{d}$ of kerosene was consumed internally while the remaining quantity was reclassified as gasoil after being blended with the latter in order to meet its winter diesel specification． $100 \mathrm{~kb} / \mathrm{d}$ of naphtha was used for upgrading and $200 \mathrm{~kb} / \mathrm{d}$ was reformed to gasoline．

						Petroleum Products								
	Crude Oil	NGL	Other	$\begin{gathered} \text { Total } \\ (1)+(2)+(3) \end{gathered}$		LPG	Naphtha	Gasoline	Total Kerosene	Of which： Jet Kerosene	$\begin{gathered} \text { Gas/ } \\ \text { Diesel Oil } \end{gathered}$	Fuel Oil	Other Products	$\begin{gathered} \text { Total Products } \\ (5)+(6)+(7) \\ +(8)+(10)+(11) \\ +(12) \end{gathered}$
	（1）	（2）	（3）	（4）		（5）	（6）	（7）	（8）	（9）	（10）	（11）	（12）	（13）
＋Production			0	0	＋Refinery Output	0	0	0	0	0	0	0	0	0
＋From Other sources			0	0	＋Receipts	0	0	0	0	0	0	0	0	0
＋Imports	0	0	0	0	＋Imports	0	0	0	0	0	0	0	0	0
－Exports			0	0	－Exports	0	0	0	0	0	0	0	0	0
＋Products Transferred ／Backflows			0	0	－Products Transferred	0	0	0	0	0	0	0	0	0
－Direct Use	0	0	0	0	＋Interproduct Transfers	0	0	0	0	0	0	0	0	0
－Stock Change	0	0	0	0	－Stock Change	0	0	0	0	0	0	0	0	0
－Statistical Difference	，\％	路 0	，\％	，，，叔，	－Statistical Difference	0	，\％,	，\％	0	，\％， 8	，做	0	，\％，\％	，，，，，，，，， 8
＝Refinery Intake	0	0	0	0	＝Demand	0	0	0	0	0	0	0	0	0
Closing stocks	0	0	0	0	Closing stocks	0	0	0	0	0	0	0	0	

Solution Exercise 5

During January 2016, the refinery produced $250 \mathrm{~kb} / \mathrm{d}$ of kerosene and $300 \mathrm{~kb} / \mathrm{d}$ of naphtha. $150 \mathrm{~kb} / \mathrm{d}$ of kerosene was consumed internally while the remaining quantity was reclassified as gasoil after being blended with the latter in order to meet its winter diesel specification. $100 \mathrm{~kb} / \mathrm{d}$ of naphtha was used for upgrading and $200 \mathrm{~kb} / \mathrm{d}$ was reformed to gasoline.

						Petroleum Products								
	Crude Oil	NGL	Other	$\begin{gathered} \text { Total } \\ (1)+(2)+(3) \end{gathered}$		LPG	Naphtha	Gasoline	Total Kerosene	Of which: Jet Kerosene	Gas/ Diesel Oil	Fuel Oil	Other Products	$\begin{gathered} \text { Total Products } \\ (5)+(6)+(7) \\ +(8)+(10)+(11) \\ +(12) \end{gathered}$
	(1)	(2)	(3)	(4)		(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
+ Production			0	0	+ Refinery Output	0	300	0	250	0	0	0	0	550
+ From Other sources			0	0	+ Receipts	0	0	0	0	0	0	0	0	0
+ Imports	0		0	0	+ Imports	0	0	0	0	0	0	0	0	0
-Exports	0		0	0	-Exports	0	0	0	0	0	0	0	0	0
$+\begin{aligned} & \text { Products Transferred } \\ & \text { /Backflows }\end{aligned}$			100	100	- Products Transferred	0	0	0	0	0	0	0	0	0
- Direct Use	0		0	0	+ Interproduct Transfers		-200	200	-100	0	100	0	0	0
- Stock Change	0	0	0	0	-Stock Change	0	0	0	0	0	0	0	0	0
-Statistical Difference		, \%	0	, , , \%	-Statistical Difference	0	0		, \& , ¢	, \%	, \%	\%	, \% , 0	, , \% 8
= Refinery Intake	0	0	100	100	= Demand	0	100	200	150	0	100	0	0	550
Closing stocks	0	0	0	0	Closing stocks	0	0	0	0	0	0	0	0	0

Exercise 6

Fill the amounts in the appropriate cells of the JODI Extended Questionnaire:
The refinery produced $310 \mathrm{~kb} / \mathrm{d}$ of gasoline and $350 \mathrm{~kb} / \mathrm{d}$ of diesel oil. Prior to final consumption $30 \mathrm{~kb} / \mathrm{d}$ of ethanol and $60 \mathrm{~kb} / \mathrm{d}$ of biodiesel is added to each product.

Exercise 6

Fill the amounts in the appropriate cells of the JODI Extended Questionnaire:
The refinery produced $310 \mathrm{~kb} / \mathrm{d}$ of gasoline and $350 \mathrm{~kb} / \mathrm{d}$ of diesel oil. Prior to final consumption $30 \mathrm{~kb} / \mathrm{d}$ of ethanol and $60 \mathrm{~kb} / \mathrm{d}$ of biodiesel is added to each product.

						Petroleum Products								
	Crude Oil	NGL	Other	$\begin{gathered} \text { Total } \\ (1)+(2)+(3) \end{gathered}$		LPG	Naphtha	Gasoline	Total Kerosene	Of which: Jet Kerosene	Gas/ Diesel Oil	Fuel Oil	Other Products	$\begin{gathered} \text { Total Products } \\ (5)+(6)+(7) \\ +(8)+(10)+(11) \\ +(12) \end{gathered}$
	(1)	(2)	(3)	(4)		(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
+ Production	0	0	0	0	+ Refinery Output	0	0	0	0	0	0	0	0	0
+ From Other sources	888	888	0	0	+ Receipts	0	0	0	0	0	0	0	0	0
+ Imports	0	0	0	0	+ Imports	0	0	0	0	0	0	0	0	0
- Exports		0	0	0	- Exports	0	0	0	0	0	0	0	0	0
$+\begin{aligned} & \text { Products Transferred } \\ & \text { /Backflows }\end{aligned}$	888		0	0	- Products Transferred	0	0	0	0	0	0	0	0	0
- Direct Use	0	0	0	0	+ Interproduct Transfers	0	0	0	0	0	0	0	0	0
- Stock Change	0	0	0	0	- Stock Change	0	0	0	0	0	0	0	0	0
- Statistical Difference	Q	0	0	0	- Statistical Difference	0	पை	¢ ب	¢ ب ب 0	0	¢ ب ¢ 0	θ	0	6
= Refinery Intake	0	0	0	0	= Demand	0	0	0	0	0	0	0	0	0
Closing stocks	0	0	0	0	Closing stocks	0	0	0	0	0	0	0	0	0

Solution Exercise 6

Fill the amounts in the appropriate cells of the JODI Extended Questionnaire:
The refinery produced $310 \mathrm{~kb} / \mathrm{d}$ of gasoline and $350 \mathrm{~kb} / \mathrm{d}$ of diesel oil. Prior to final consumption $30 \mathrm{~kb} / \mathrm{d}$ of ethanol and $60 \mathrm{~kb} / \mathrm{d}$ of biodiesel is added to each product.

						Petroleum Products								
	Crude Oil	NGL	Other	$\begin{gathered} \text { Total } \\ (1)+(2)+(3) \end{gathered}$		LPG	Naphtha	Gasoline	Total Kerosene	Of which: Jet Kerosene	Gas/ Diesel Oil	Fuel Oil	Other Products	$\left\lvert\, \begin{gathered} \text { Total Products } \\ (5)+(6)+(7) \\ +(8)+(10)+(11) \\ +(12) \end{gathered}\right.$
	(1)	(2)	(3)	(4)		(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
+ Production	0	0	0	0	+ Refinery Output	0	0	310	0	0	350	0	0	660
+ From Other sources	8888	888	90	90	+ Receipts	0	0	30	0	0	60	0	0	90
+ Imports	0	0	0	0	+ Imports	0	0	0	0	0	0	0	0	0
- Exports	0		0	0	- Exports	0	0	0	0	0	0	0	0	0
Products Transferred			0	0	- Products Transferred	0	0	0	0	0	0	0	0	0
- Direct Use	0	0	0	0	+ Interproduct Transfers		0	0	0	0	0	0	0	0
- Stock Change	0	0	0	0	- Stock Change	0	0	0	0	0	0	0	0	0
-Statistical Difference	0	¢__ 0	¢__ 0	بـ! 0	- Statistical Difference	- \quad ¢	- \quad ¢ 0	- \quad ¢ 0	¢_	- \quad ¢	ヤ__ 0	प_ $\quad 1$	ヤ__ 0	بـ! \quad !
= Refinery Intake	0	0	90	90	= Demand	0	0	340	0	0	410	0	0	750
Closing stocks	0	0	0	0	Closing stocks	0	0	0	0	0	0	0	0	0

Verification of Data Quality

\checkmark Balance check
\checkmark Stock Check
\checkmark Time series check

Balance check

- Primary oil

```
Calculated Refinery Intake = production + From Other Sources + Imports - Exports + Products transferred/Backflows -
    Direct use - Stok change
```

- Oil products

Demand = Refinery output + Receipts + Imports - Exports - Products transferred + Interproduct transfers - Stock change

Total oil products = LPG + Naphtha + Motor/aviation gasolines + Kerosenes + Gas/diesel oil + Fuel oil + Other oil products

Statistical difference

Differences between observed supply flows and calculated Refinery intake or Demand

Primary supply
Statistical Difference =

+ Production
+ From other sources
+ Imports
- Exports
+ Products Transferred/Backflows
- Direct use
- Stock change
- Refinery intake

Secondary oil products supply
Statistical Difference =

+ Refinery Output
+ Receipts
+ Imports
- Exports
- Products Transferred
+ Interproduct Transfers
- Stock change
- Demand

Example 1: Fuel balance check

	Petroleum Products								
	LPG	Naphtha	Gasoline	Total Kerosene	$\begin{aligned} & \text { Of which: } \\ & \text { Jet } \\ & \text { Kerosene } \end{aligned}$	Gas/ Diesel Oil	Fuel Oil	Other Products	Total Products $\begin{gathered} (5)+(6)+(7)+(8) \\ +(10)+(11) \\ +(12) \end{gathered}$
	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
+ Refinery Output	126	160	866	334	331	1083	942	994	4505
+ Receipts	0	0	0	0	0	0	0	0	0
+ Imports	59	0	0	0	0	0	60	2	1021
- Exports	13	160	208	143	140	555	26	117	1222
- Products Transferred	0	0	0	0	0	0	0	0	0
+ Interproduct Transfers	0	0	0	0	0	55	-55	0	0
-Stock Change	-2	0	-47	-10	-10	101	-92	-40	-90
-Statistical Difference	, \% \% ,	\&	\% \% ,	\& 2 ,		\% 2 ,	\% 2 ,	\& \% \% 0	, \& , \& , \& ,
= Demand	176	0	700	201	201	482	1013	919	3491
Closing stocks	95	0	884	317	317	1065	1154	511	4026

Import of Total Products $=59+60+2=121$

Statistical Difference=4394-3491=903
Calculated Demand of Total
Products=4394
> The sum of Imports for individual products is lower than Total oil products Imports.
$>$ This suggests that the Imports data of Total oil products is misreported or there are missing Imports data for some products. As the statistical difference is very high, it is likely that the Imports of Total oil products is misreported.
$>$ Hence there is a need for statisticians to check the values of all the products including Total oil products.

Example 2: Fuel balance check

	Petroleum Products								
	LPG	Naphtha	Gasoline	Total Kerosene	Of which: Jet Kerosene	$\begin{array}{\|c} \text { Gas/ Diesel } \\ \text { Oil } \end{array}$	Fuel Oil	Other Products	Total Products $\begin{gathered} (5)+(6)+(7)+(8) \\ +(10)+(11) \\ +(12) \end{gathered}$
	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
+ Refinery Output	126	160	866	334	331	1083	942	994	2338
+ Receipts	0	0	0	0	0	0	0	0	0
+ Imports	59	0	0	0	0	0	60	2	121
- Exports	13	160	208	143	140	555	26	117	1222
- Products Transferred	0	0	0	0	0	0	0	0	
+ Interproduct Transfers	0	0	0	0	0	55	-55	0	0
- Stock Change	-2	0	-47	-10	-10	101	-92	-40	-90
-Statistical Difference	2	0	¢!	¢	¢!	ヤ! 0	ฺฺ	पبை	بை ب_ 46
= Demand	176	0	700	201	201	482	1013	919	3491
Closing stocks	95	0	884	317	317	1065	1154	511	4026

$2338+2164+5-2=4505$

Total Products Refinary Output $=4505$

Statistical Difference=3491-1327=2164 Calculated Total Products Demand $=1327$
> The sum of all products for Refinery output is larger than the corresponding Total oil products. As a result there is a considerable statistical difference observed. Therefore, there is an error in the data for that particular flow.

Energy Community

Joint Organisations Data Initiative－Oi Monthly Questionnaire

Month
Unit：

						Petroleum Products								
	Crude oil	NGL	Other	$\begin{gathered} \text { Total } \\ (\mathbf{1})+(2)+(\mathbf{3}) \end{gathered}$		LPG	Naphtha	Gasoline	$\begin{gathered} \text { Total } \\ \text { kerosene } \end{gathered}$	Of which：Jet kerosene	Gas／diesel oil	Fuel oil	Other products	$\begin{aligned} & \text { Total products } \\ & (5)+(6)+(7)+(8) \\ & +(10)+(11)+(12) \end{aligned}$
	（1）	（2）	（3）	（4）		（5）	（6）	（7）	（8）	（9）	（10）	（11）	（12）	（13）
Production					＋Refinery output	126	160	866	334	331	1083	942	994	4505
From other sources	888888	8888			＋Receipts	0	0	0	0	0	0	0	0	0
Imports					＋Imports	59	0	0	0	0	0	60	2	1021
Exports					－Exports	13	160	208	143	140	555	26	117	1222
Products transferred ／Backflows	8888				－Products transferred	0	0	0	0	0	0	0	0	0
Direct use					＋Interproduct transfers	0	0	0	0	0	55	－55	0	0
Stock change					－Stock change	－2	0	－47	－10	－10	101	－92	－40	－90
Statistical difference	ب⿴囗	¢，	¢＿＿⿴囗	¢，	－Statistical difference	！	¢＿女＿0	¢⿴囗ை	प⿴囗ைை	¢⿴囗ைை	¢＿女＿ 0	¢，¢	¢𠃊⿴囗	－
Refinery intake					＝Demand	176	0	700	201	201	482	1013	919	3491
Closing stocks					Closing stocks	95	0	884	317	317	1065	1154	511	4026

Automatic Checks Petroleum Products
Total products sum

Total Products column is not the sum of the elements
Statistical difference OK
Stat．diff．／Demand Negative Products transferred nterproduct transfers Statistical Difference above 10% of Demand，please investigate OK

Jet kerosene
OK
Negative stock values OK

Total sum	OK
Statistical difference	OK
Stat．diff．／Refinery intake	OK
Products transferred	OK
Negative products transferred	OK
Blocked out cells	OK
Negative stock values	OK
Refinery losses	-4.505

Energy Community

Joint Organisations Data Initiative - Oil
Monthly Questionnaire
Country

Month $\underline{\square}$ \longrightarrow

Unit:

Automatic Checks
Total sum
Statistical difference
Stat. diff./Refinery intake
Products transferred
Negative products transferred
Blocked out cells
Negative stock values
Refinery losses

Stocks check

Stock change $=$ Closing stock for M-1 - Closing stock for M-2
$\left.\begin{array}{lllll}\hline & \begin{array}{c}\text { Crude } \\ \text { oil }\end{array} & \text { LPG } & \begin{array}{c}\text { Motor } \\ \text { laviation } \\ \text { Gasoline }\end{array} & \text { Total Kerosene }\end{array} \begin{array}{c}\text { Gas/ Diesel Oil } \\ \text { Products }\end{array}\right]$

Time series check

Percentage change $(\%)=\frac{\text { Current month data }- \text { Previous month data }}{\text { Previous month data }} \times 100$

				Monthly Growth Rate (Previous 12 months)			March
	Minimum	Maximum	Average				
LPG	-9.2%	11.1%	0.8%	15.0%			
Motor/aviation gasoline	-10.1%	8.9%	0.0%	8.0%			
Kerosenes	-10.3%	8.1%	0.5%	-10.4%			
Gas/diesel oil	-12.0%	9.4%	-0.6%	-3.0%			
Fuel oil	-25.3%	23.0%	1.0%	5.0%			
Total oil products	-7.1%	7.3%	-0.5%	2.0%			

Thank you for your attention!

