

An **fintero** Company

Methane Mondays

OGMP 2.0 compliant emission measurements

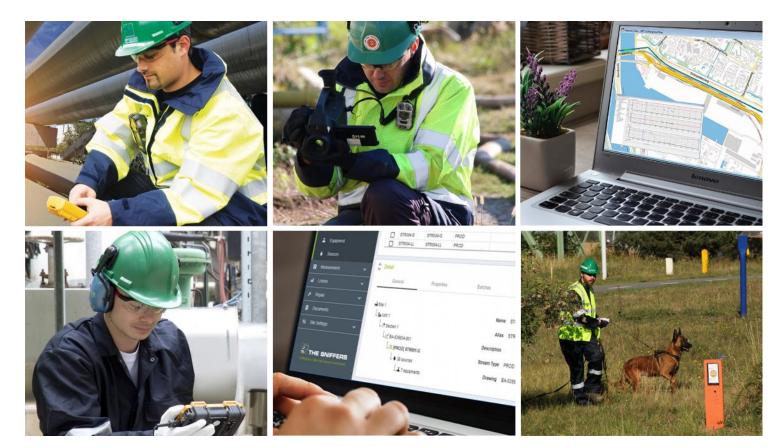
Date: 16/05/2022

Cindy Verhoeven – Regional Business Manager

The Sniffers Environmental & Integrity Service Provider

Emission Management Pipeline Integrity

35 Countries Worldwide experience


9.000 Emission Reduction Projects

Innovative Technologies, Equipment and Applications

Certified & accredited ISO 9001- 14001 / ISO 17025 612-TEST Belac 389-TEST Israc

Realizing your Environmental, and Sustainability Ambitions and safe Pipeline Operations

Emission Reduction Broad range of Services

LDAR Fugitive Emission Management HFS / PID / FID

Hybrid LDAR Fugitive Emission Management OGI Camera

Methane Accounting Program / OGMP 2.0 compliance

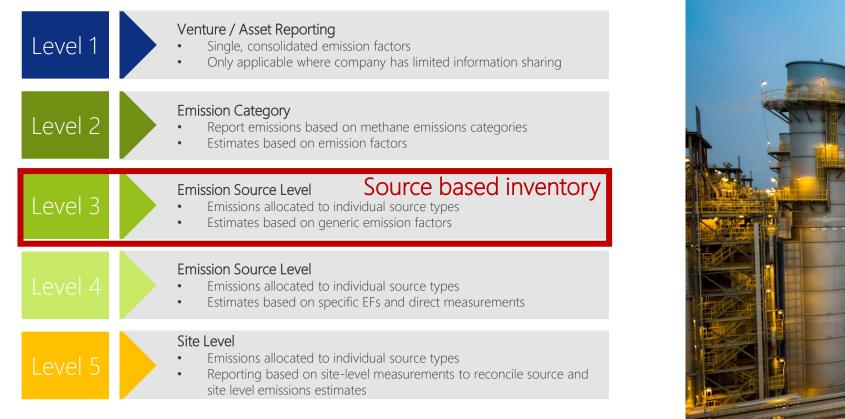
Storage Tank, LNG Emission Management

Emission Management Software SFFMP

lot, Ai, Remote Sensing, Drones & Satellites Innovation

THE SNIFFERS

Development


Environmental Program Development

Benchmarking Emission Performance

3

Level Scenario

GOLD Standard

Plan in place to report at level 4/5 within 3 years (5 for JV's)

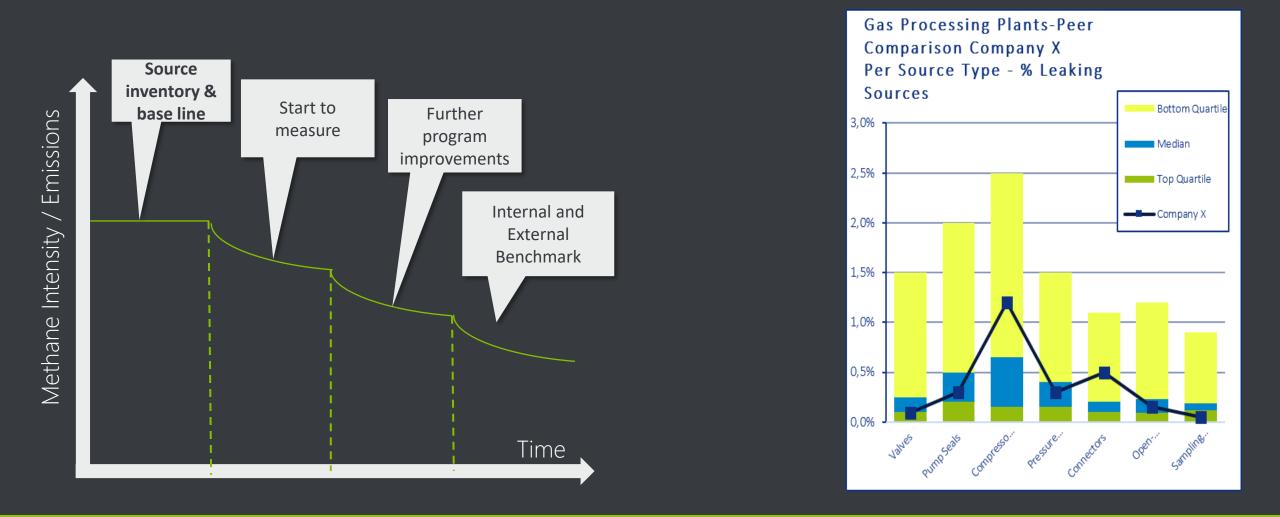

🙆 Reporting against OGMP2.0

What do companies want?

- Understand current emission picture •
- Compliance ۲
- Targets: Able to monitor improvements ٠
- Data intelligence ٠
- Reassurence: validation, prognoses... ٠

Data needs to be:

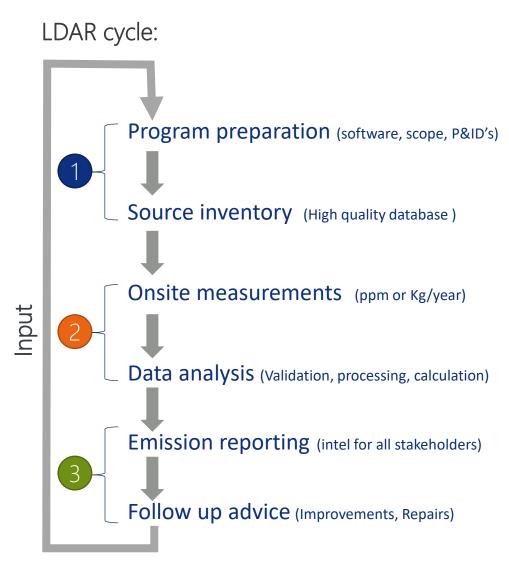
- Complete ٠
- Reliable ٠
- Traceable ٠
- Actionable ٠
- Comparable ٠



Certainty

estimating modelling **Random projects**

OGMP 2.0 Moving from L1 to L5


Detailed and reliable emission data allows stepwise improvements

© 2020 The Sniffers I 6

reliable and robust project execution :

- 1. LDAR protocol, standards / regulation (EPA M21, EN15446, OGMP 2.0, NTA8399)
- 2. LDAR scope cycle: Define annual measurement scope
- 3. Inventory of sources + VOC streams: Detailed, high quality and always up to date
- 4. Combine <u>carefully chosen measurement techniques</u>: FID / (Q)OGI / HFS / flowmeter / VPAC / drone / VSIR / fixed sensor ...
- 5. <u>people</u>: Dedicated, skilled, experienced
- 6. Emission management **software** (forget about Excel)
- 7. Optimize: automization, innovation, software integration
- 8. Discipline: stick with the program cycle

1 = Identify 2 = quantify 3 = Improve

How to ensure success and drive emission reduction results?

1. Identify: Detailed & high quality inventory

3. Improve:

Emission reporting and benchmarking, Software

🛆 Emission Management Program

2. Quantify:

Fit for purpose measurements

© 2020 The Sniffers 8

- Bagging / HFS:
 - o Measurements: 25-50 sources / day
 - o Direct loss measurement (Kg/yr)
 - o Most accurate field measurement
 - o Development of new emission correlation factors (e.g. CH4)
- Sniffing (FID, PID, CH4 laser) :
 - o Measurements: 800-2000 sources / day
 - Concentration measurement, converted into loss using correlation tables (EN15446, EPA M21 PI/SOCMI)
- OGI (infrared camera):
 - o Screening: 2000-5000 sources / day
 - Only qualitative, converted into loss using Leak-no-leak factors, or combined with HFS / QOGI tablet / sniffing for quantification

High quality Sources based measurements for fugitive emissions: Most common techniques

© 2020 The Sniffers | S

PID-FID

• EPA Method 21 Petroleum Industry factors

Equipment Type (all services)	Default Zero Pegged Emission F Emission Rate (kg/hr/source) (kg/hr/source) Mar		(g/hr/source)	Correlation Equation ^b (kg/hr/source)
		10.000 ppmv	100.000 ppmv	
Leak Rates for Petroleum	Industry (Refinery, Ma	rketing Terr	ninals and Oil and Gas	Production)
Valve	7.8E-06	0.064	0.14	2.29E-06xSV ^{0.746}
Pump	2.4E-05	0.074	0.16	5.03E-05xSV ^{0.610}
Other ^c	4.0E-06	0.073	0.11	1.36E-05xSV ^{0.589}
Connector	7.5E-06	0.028	0.030	1.53E-06xSV ^{0.735}
Flange	3.1E-07	0.085	0.084	4.61E-06xSV ^{0.703}
Open-ended line	2.0E-06	0.030	0.079	2.20E-06xSV ^{0.704}
Leak Rat	es for Synthetic Orgar	nic Chemica	l Manufacturing Indust	ry (SOCMI)
Gas valve	6.6E-07	0.024	0.11	1.87E-06xSV ^{0.873}
Light liquid valve	4.9E-07	0.036	0.15	6.41E-06xSV ^{0.797}
Light liquid pump	7.5E-06	0.14	0.62	1.90E-05xSV ^{0.824}
Connector	6.1E-07	0.044	0.22	3.05E-06xSV ^{0.885}

Optical Gas Imaging - OGI

Leak/No Leak Factors

Component type	Emission factor	Emission factor (g/h/component) for specified leak definition (g/h)						
	type	3	б	30	60			
Valves	No-leak	0.019	0.043	0.17	0.27			
	Leak	55	73	140	200			
Pumps,	No-leak	0.096	0.13	0.59	0.75			
compressors	Leak	140	160	310	350			
Flanges	No-leak	0.0026	0.0041	0.01	0.014			
	Leak	29	45	88	120			
Other components	No-leak	0.007	0.014	0.051	0.081			
	Leak	56	75	150	210			

 Development of new specific emission factors and CH4 correlation factors

B High Flow Sampling or Bagging

© 2021 The Sniffers | 11

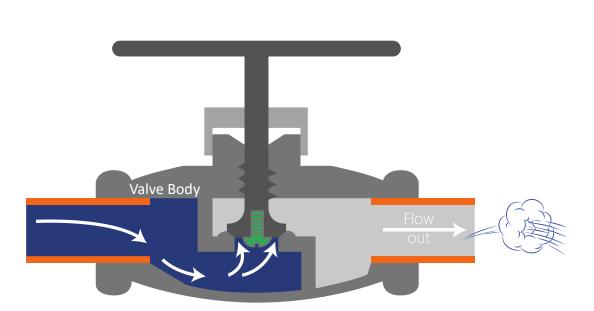
Our custom made HFS in detail

- 1. Heavy-duty trolley
- 2. 1 ¹/₂" tubing, 2 auto-quick connectors
- 3. 3D-printed Intake
- 4. 3D-printed Exhaust + FID/PID connection for concentration (ppm)
- 5. Air fan, constant flow ± 205lpm, Explosion protected zone 1
- 6. Anti-static Capture bag, 80cm x 80cm with a 3D-printed connector
- 7. Methane Gas Detector 0,1ppm \rightarrow 100VOL%
- 8. In-line flow meter, daily check-up the flow of the air fan.

Hybrid emission calculation

	equipment	equipment_type	source	position	Equipment_location	access_level	ppm_value LDAR	loss_amount correlation socmi (kg/yr)	loss_amount correlation refinery (kg/yr)	loss_amount OGI factor 6g/h (kg/yr)	loss_amount OGI factor 3g/h (kg/yr)	loss_amount high flow sampler (kg/yr)
(CN	NR	CN	ου	6m tWv V-190	0	80000	559,52	51,61	630	470,4	80,30
(CN	RA	CN	IN	tZOv V-190, h = 1m	1	20000	164,06	18,63	630	470,4	17,04
(CN	RA	CN	IN	tZOv V-190, h = 1m	1	10000	88,83	11,19	630	470,4	17,94
(CN	RA	CN	IN	tZOv V-190, h = 1m	1	40000	302,97	31,01	630	470,4	7,36
(CN	NR	CN	IN	midden in V280 en V250	0	10000	88,83	11,19	630	470,4	48,51
(CN	NR	CN	ου	tOv production area	0	30000	234,87	25,10	630	470,4	Hersteld
(cv	NR	CN	MI	2m tNWv V-910	0	50000	369,12	36,54	630	470,4	37,15
(cv	NR	CN	ου	op TK365	1	8000	72,91	9,50	630	470,4	893,53
,	VA	BA	FL	IN	tWv TK130, h = 1,8m	2	80000	559,52	108,36	378	243,6	142,71
,	VA	NE	CN	ου	tOv TK335, h = 4m	0	10000	88,83	11,19	630	470,4	Hersteld
`	VA	BA	CN	ου	tWv TK335	0	9000	80,93	10,36	630	470,4	Hersteld
(CN	EL	CN	IN	tWv V180	2	6000	56,53	7,69	630	470,4	40,55
(CN	NR	CN	ου	tWv compressorgebouw	2	80000	559,52	51,61	630	470,4	2,37
	CN	RA	CN	ου	tNOv V350	3	4900	47,25	6,63	630	470,4	1,25
`	VA	BA	CN	ΟU	tZv compressorgebouw	4	80000	559,52	51,61	630	470,4	121,11
,	VA	BA	CN	IN	tZWv koelbanken	4	90000	620,99	56,28	630	470,4	173,53
,	VA	BA	CN	ΟU	tZWv koelbanken	4	50000	369,12	36,54	630	470,4	171,60
(CN	RA	CN		tNv brug	1	90000	620,99	56,28	630	470,4	Niet bereikbaar
	CN	NR	CN		tZWv flair 16m, h = 2,5m	0	40000	302,97	31,01	630	470,4	1214,93

Leak Quantification by QOGI



© 2021 The Sniffers I 1

Flaring or Venting Loss of VOC's, CH₄ Internally passing equipment High losses

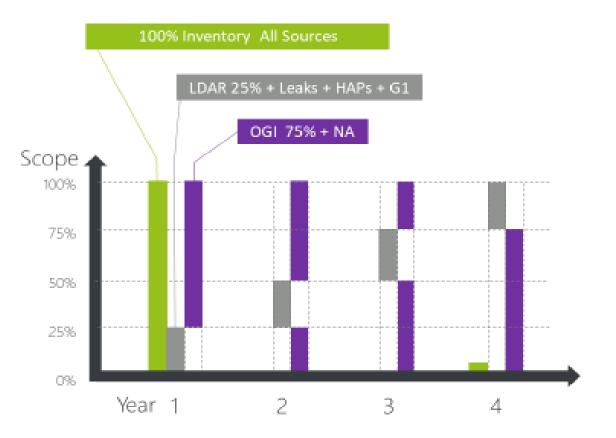
Examples:

pressure relief valves, safety valves, bypass valves, automatic regulated valves, check valves ...

• Vent and Flare Loss Monitoring with VPAC II

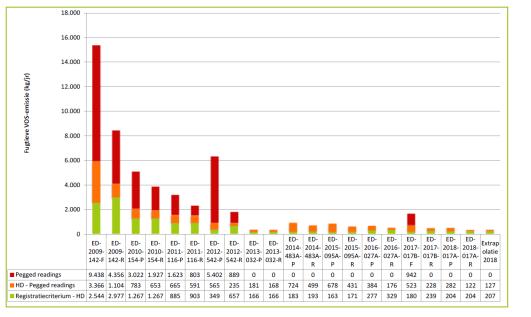
© 2021 The Sniffers | 16

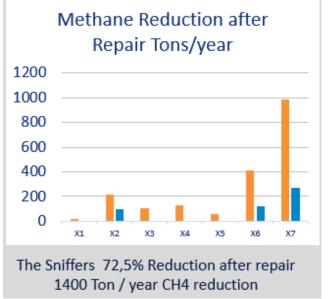
Vent and Flare Loss Monitoring Results from Gas Plant Survey


Equipment	# Sources	# Leaks	% leaks	Loss (Kg/year)
Control Valve	41	3	7,3	1.854.074
Hand Valve	108	3	2,8	39.852
Pressure Safety Valve	78	1	1,3	221
Other	1	0	0,0	0
TOTAL	228	7	3,1	1.894.147

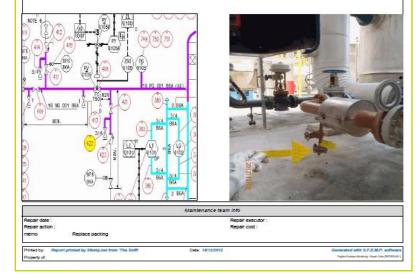
Repairing only 3 control valves saves +1.800.000 kg/year of product

[–] SMART scoping: Optimized effectiveness, lower cost


For building reliable emission data, it is not necessary to measure everything all the time!



- Combined Sniffing and OGI scope + HFS
- Detect all leaks above repair threshold
- Add Sniffing scope to keep level of detail
- Attention for equipments that have a high risk of leaking: e.g. pump seals, compressor seals
- Hazardous products (HAP's) are covered
- Bottom Up approach → Actionable, data driven program


G1 = Group 1 equipments (high risk potential) NA = Non-Accessible sources HAP's = Hazardous Products (e.g. benzene)

High quality program, focused on leaks with highest probability and consequence (RBI), and with limited investments

Leak equipment cod Source code : Company:	e: 422 2 Tys	×	YTD		Applicable protocol: Calculation method:		n Soomi	/°	
Equipment / Leak	source localisat	tion			Equipment	/Leak source	Information	*	
Stream name: Composition:	REFORMER 10-T4031-01 STR001-0 COMP001 METHANE				Equipment: Equipment it Source: Source posit Source locat Barcode ID: Stat:	r FL on: OU	Gate Flange		
System: Line: Access level: Equipment location:	M1-FA1D1 D 2,75m NW of M	11-FA101, b=1m			Source proto insulation: SAP-code: Manufacture:	No			
				Historical er	volution				
Measurement date	РРМ	Loss Kglyr	Working hours /yr	Remark		Repeir Action		Access status	Operation status
12/05/2012	6500	211.19	8,615					AC	
12/01/2012	27500	223.06	8.615		122			AC.	

- Maintenance: Leak traceability and repair information, SAP integration, Inventory updates, bad actors.
- HSE: Leak follow up information and emission values, high focus on HAPS and risks, Emissions per medium, regulatory compliance.
- Management: Success rate of LDAR program, benchmarking
- **Board:** Corporate social responsibility, positioning of the company
- Authorities: Compliance audits, legislation, audit trails

Reports: different results for different stakeholder

 NER
 Gasunie > Grijpskerk

 Image: A strings
 Total Losses Detail

 Total Losses J 2021
 Total Losses J 2021

 Total Emissions
 Loss Count

 Image: A strings
 Image: A strings

 Total Emissions
 Image: A strings

 Total Losses J 2021
 Image: A strings

 Image: A strings
 Image: A string

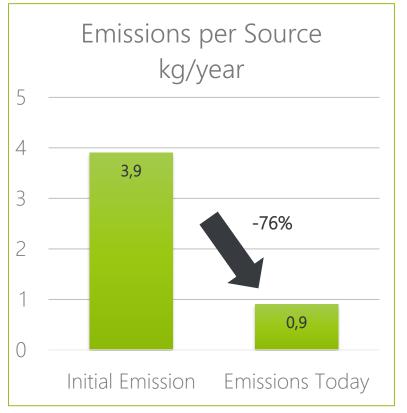
 Image: A strings

Emission Management Software – SFEMP®

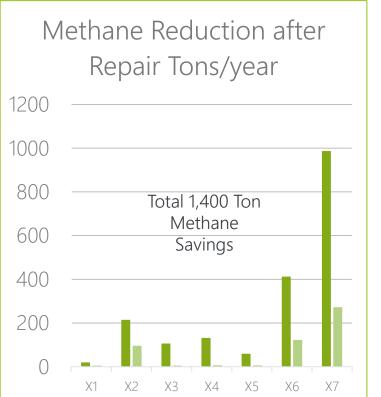
© 2020 The Sniffers

SFEMP

Dashboard


Cindy Verhoever

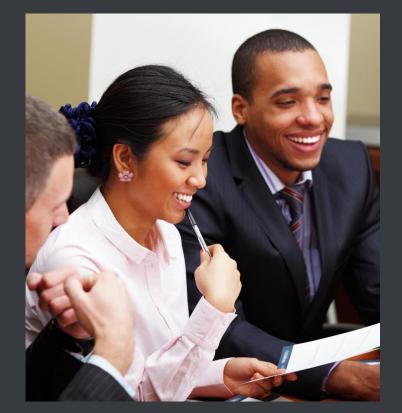
thesniffers

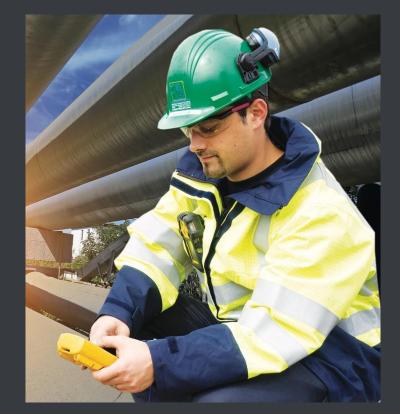

.

SFEMP Mobile: auditable processing of field data

The Sniffers Study : 64 Companies - 2Mio Sources – Evolution over 6 years Fugitive

The Sniffers Study : 7 Gas Processing Plants -70% in one year Methane


△ LDAR Results -75% emission reduction


© 2021 The Sniffers 22

Cindy Verhoeven

SW

Cindy.verhoeven@the-sniffers.com

+31631567875

Why mix measurement technologies? EXAMPLE: OGI versus SNIFFING

Overview per leak class										
Class	Number measured	Leaks>9ppm	Number leaks>RD	Leaks IR						
ZERO	10340	-	-	0						
Below 1000	358	358	-	0						
1000+	225	225	225	0						
10.000+	113	113	113	12						
50.000+	6	6	6	4						
100.0000+	167	167	167	119						
TOTAL	11209	869	511	135						

LDAR study:

FID (sniffing) measurements compared to OGI camera

- Only 135 out of 869 leaks detected with OGI camera = 15,5%
- Also big leaks are missed with OGI camera
- With current OGI technology, leaks < 10.000 ppm remain undetected. CH4, as the smaller molecule is more difficult to detect by the camera.
- CH4 : Relatively large amount of small leaks, responsible for a substantial part of the total emissions
- With OGI a secondary measurement is needed for accurate quantification
- Main advantage of OGI vs Sniffing: non-accessibles can be screened from a distance

